MATH 4206: Riemann surfaces
This course is an introduction to Riemann surfaces. Starting with examples like the Riemann sphere and the complex tori, we set up the basics of theory (ramification, divisors, differential forms, genus...) in order to tackle the important theorems (Riemann-Hurwitz, Riemann-Roch...). We end up with an opening to important concepts for number theory: modular curves and monodromy theory.
* Definition of Riemann surfaces.
* The Riemann sphere, elliptic functions, complex tori.
* Holomorphic maps between Riemann surfaces.
* Ramification theory, Riemann-Hurwitz formula.
* Meromorphic functions, Riemann-Roch theorem.
* Differential forms, genus of a Riemann surface.
* Quotients of Riemann surfaces. Statement of the uniformization theorem.
* Modular curves and monodromy representations.
contacts
Responsable du MA1 :
François Brunault
ENS, site Monod, bâtiment GN1 (l’arche), 4e étage
Gestionnaires de scolarité
École normale supérieure
Sophie Bonche
Site Monod, bâtiment LE (accolé au GN1, côté nord de l’allée d’Italie)
bureau 536, allée Allan C. Wilson
04.72.72.85.53
Université Claude Bernard
Aline Ghedira et Ségolène Serre
scolarite.mathematiques@univ-lyon1.fr
ENS de Lyon
15 parvis René Descartes - BP 7000
69342 Lyon Cedex 07 - FRANCE
Tél. : Site René Descartes (siège) : +33 (0) 4 37 37 60 00
Site Jacques Monod : +33 (0) 4 72 72 80 00