MATH 4104: Advanced probability theory
1) Conditioning
Conditional expectation, conditional laws.
2) Discrete martingales.
Filtrations. Martingales, sub-martingales, super-martingales.
Stopping time, sigma algebra, stopping theorem.
Inequality of the number of Doob rises.
A.s. convergence theorem.
Doob’s maximal inequality.
Convergence in Lp (p>1), special case of L2 martingales.
Uniform integrability, convergence in L1. Retrograde martingales. Applications.
3) Markov chains.
Definitions of a Markov chain (countable state space and discrete-time), weak and strong Markov property.
Classification of states, irreducibility, transience, recurrence.
Invariant measure: existence, uniqueness.
Convergence theorems: ergodic theorem, convergence in law towards the invariant measure.
Reversible Markov chains, special case of Markov chains on a finite set.
Examples: Random walks, branching process, Ehrenfest model, Monte Carlo method, simple cut-off cases.
ENS de Lyon
15 parvis René Descartes - BP 7000
69342 Lyon Cedex 07 - FRANCE
Tél. : Site René Descartes (siège) : +33 (0) 4 37 37 60 00
Site Jacques Monod : +33 (0) 4 72 72 80 00