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1. Probability and statistics

This program is made of two closely intertwined lecture series in probability (P) and
statistics (S), that will provide a strong and interdisciplinary training in the modern
mathematics of random phenomena.

Via their choice of lectures (3 out of 4 in the first semester and 4 out of 6 in the second),
students may choose to give a stronger focus on the probabilistic or statistical aspects
of this program. It is also possible to follow lectures from other programs, especially in
PDEs. It is strongly advised to follow the corresponding refresher courses.

2. Refresher Course

Stochastic tools (Grégory Miermont, 15h).
(1) Discrete time martingales: stopping theorems and convergence. Extensions for

continuous time martingales.
(2) Construction of Brownian motion. Regularity of trajectories.
(3) Some properties of Brownian trajectories. Connection with the heat equation.

3. Courses

P1: Statistical physics (Christophe Garban, 24h). In statistical physics, one is
interested in physical models made of a large number of microscopic elements which
interact together in a simple fashion. The goal is then to understand how come such
simple microscopic mechanisms can generate interesting (and surprising!) macroscopic
phenomena such as phase transitions or symmetry breaking. This program has lead to
the development of an important branch of probability theory and the aim of this course
is to give a panorama of the field together with tools and techniques that are used in
statistical mechanics. We shall focus on three fundamental models: percolation, Ising
model and O(n) spherical spin model. Program of the course:

(1) Percolation
* Definition, phase transition
* FKG inequality, pc = 1/2
* Exponential decay in the sub-critical regime
* Russo-Seynour-Welsh theorem for critical percolation
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(2) Ising model
* Definition, correlation inequalities
* Infinite volume limit, Free energy, phase transition
* Low temperature and Peierls argument
* Uniqueness at high temperature

(3) Phase transition KT (Kosterlitz-Thouless) Nobel prize in phyics 2016
* Spin models with continuous symmetry (σx ∈ Sd, d ≥ 1)
* No symmetry breaking in dimension 2 (Mermin-Wagner theorem)
* Gaussian Free Field
* Vortices and Coulomb gas
* A glimpse of Frölich-Spencer Theorem on the KT transition for the XY model

[σ = (σx)x∈Z2 ∈ (S1)Z2 ]

References
[1] W. Werner, Percolation et mod* èle d’Ising, Soc. Math. France, 2009.
[2] Y. Velenik, Introduction aux champs aléatoires markoviens et gibbsiens,
http://www.unige.ch/math/folks/velenik/Cours/2006-2007/Gibbs/gibbs.pdf.

P2: Stochastic calculus (Grégory Miermont, 24h). This lecture series will present
some of the most important tools allowing to build and study continuous-time stochastic
processes, the central example of which is of course Brownian motion. To this end, we will
have to introduce and study semimartingales, a rich class of processes for which one can
develop a differential and integral calculus, and set and solve certain type of stochastic
differential equations.

Just as for the familiar ordinary differential equations (or PDEs), the motivation to
study such stochastic differential equations comes from the goal of understanding the
global behaviour of random processes by equations describing their infinitesimal be-
haviour. But since we are dealing with random processes, these equations contain a
random “noise”, which informally is an infinitesimal increment of Brownian motion. The
main problem of their study comes from the fact that Brownian motion (and therefore
the other processes of interest) have too rough trajectories (nowhere differentiable, for
instance) for the usual differential and integral calculus to make sense.

In front of this obstacle, we will develop a notion of stochastic integral, due to Itô. It
will give rise to a particular integral calculus, in which Itô’s formula acts as an integration
by parts (or a fundamental theorem of analysis) of a new kind. This integral calculus will
allow us to study the stochastic differential equations for continuous semimartingales, and
will shed a new light on these processes, for instance via Lévy’s characterization of Brow-
nian motion, or the Dubins-Schwarz theorem according to which continuous martingales
are appropriate time-changes of Brownian motion. Contents:

(1) Generalities on continuous-time processes
(2) Continuous-time martingales, regularization. Local martingales, semimartingales.

Bracket of a continuous semimartingale.
(3) Stochastic integral with respect to a continuous semimartingale.
(4) Itô’s formula and applications. The theorems of Lévy, Dubins-Schwarz, Girsanov.

Burkholder-Davis-Gundy inequalities.
(5) Stochastic differential equations. The Lipschitz case.
(6) (Time allowing) Continuous-time Markov processes. Generators. Diffusions.
References
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[1] Karatzas-Shreve: Brownian motion and stochastic calculus
[2] Le Gall: Brownian motion and stochastic calculus
[3] Mörters-Peres: Brownian motion
[4] Revuz-Yor: Continuous martingales and Brownian motion
[5] Varadhan: Stochastic processes

S1: Concentration of measure in probability and high-dimensional statistical
learning (Guillaume Aubrun, Aurélien Garivier, Rémi Gribonval, 24h+8h).
This course will introduce the notion of concentration of measure and highlight its appli-
cations, notably in high dimensional data processing and machine learning. The course
will start from deviations inequalities for averages of independent variables, and illustrate
their interest for the analysis of random graphs and random projections for dimension re-
duction. It will then be shown how other high-dimensional random functions concentrate,
and what guarantees this concentration yields for randomized algorithms and machine
learning procedures to learn from large training collections. This course will be based on
a sample of the classical textbook “Concentration Inequalities” by Boucheron, Massart,
Lugosi, and on “High-Dimensional Probability” by Roman Vershynin. Applications to
machine learning will rely on “Understanding Machine Learning”, by Shalev-Schwartz
and Ben-David.

S2: Non-parametrics (Irène Gannaz, Clément Marteau, Franck Picard, 24h).
In this course we will focus on recent developments in non parametric statistics, with a
special focus on non-parametric model selection and high dimensional statistics. Vari-
able selection through the LASSO (Least Absolute Shrinkage and Selection Operator)
has revolutionized high dimensional statistics thanks to the use of a L1-constrained opti-
mization problem that ensures powerful statistical properties. These connections between
non-convex optimization and Statistics has been very fruitful from both the applied and
theoretical aspects of Machine Learning. A non-negligible part of this course will focus on
the theoretical properties (model selection, convergence ...) of penalized estimators, with
the use of oracle inequalities as a building block. These penalized methods will be put into
perspective with kernel-based estimation and regression, another popular non-parametric
strategy that requires fine theoretical and computational calibration (bandwith choice).
Some attention may also be payed to related topics such as wavelet transform, multiple
testing issues or signal processing on graphs.

P3 : Large random matrices and applications (Alice Guionnet, 18h). Large
random matrices have appeared in the work of the statistician Wishart, then in those
of the physicist Wigner. Their theory has developed at a tremendous speed since the
years 1990’s. This lecture series will be opportunity to explore this theory, in particular
the questions of almost-sure convergence of the spectrum, the study of their local and
global fluctuations, and their large deviations properties. Finally, we will study some
applications in statistics.

P4 : Random Graphs (Dieter Mitsche, 18h). In the last years, complex networks
have become central elements in many areas (telecommunication networks, internet, neu-
ral networks, social networks, propagation of infectious diseases, propagation of rumors,
....). It is a booming area, and it is crucial to develop mathematical models to represent
these networks.
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A network is often modelled by a random graph, and this course proposes the study of
different random graph models, in particular the Erdö-Rényi random graph model, the
configuration model and random geometric graphs. A special focus of this course will be
given on the threshold of the giant component in different graph models. Contents:

(1) Erdös-Rényi model
* Introduction, subgraph count
* Local weak convergence
* Phase transition, appearance of a giant component
* Hamiltonicity

(2) Configuration model
* Differential equation method
* Emergence of a giant component 3. Random geometric graphs
* Euclidean random geometric graphs - emergence of the giant component
* Introduction to random hyperbolic graphs

References
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P5 : Determinantal processes (Adrien Kassel, 18h). A determinantal process on
a nice topological measured space S is a random discrete collection of points such that
the correlation functions – loosely speaking, the density of probability of seeing a finite
subcollection of points at given locations – exist, and may be written in the form

ρm(x1, . . . , xm) = det[(K(xi, xj))1≤i,j≤m] ,
where K : S2 → C is a two-point function, also called a kernel.

There are many examples of stochastic models which give rise to interesting determi-
nantal processes, many of which find their origin in mathematical physics. The corre-
sponding kernel can sometimes be computed rather explicitly, which enables the study
of fine properties of the model. We may broadly distinguish two classes of processes
according to the topology of S: discrete ones (e.g. S = Zd) and continuous ones (e.g.
S = Rd). Examples of discrete processes include random spanning forests on finite and
infinite graphs; examples of continuous processes include eigenvalues of certain random
matrices of finite or infinite size.

The goal of this course will be to present a theory of determinantal processes, namely
to present what is common to these examples beyond their particularities. For that
matter, we will focus on the better understood case where K is self-dual, namely when
the symmetry K(x, y) = K(y, x) holds.

We will start with the case where S is finite, for which a very complete understanding
is available. The kernel K is then a Hermitian matrix, and the process is completely
described in terms of linear algebra in CS, and its Euclidean geometry. This allows to
explain the link to theoretical physics in quite a transparent way. This part of the theory
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may easily be extended to the case where S is countable, where now `2(S) is the relevant
geometry. To move on to the case of uncountable S requires extra caution, and the
dictionary between kernels and Euclidean geometry now needs to be enhanced to the
setup of bounded integral operators on the Hilbert space L2(S).

Examples we will present, at least superficially, include: uniform spanning forests of
infinite lattices; zeros of the Gaussian analytic function on the unit disc; eigenvalues of a
random Hermitian matrix distributed according to the Gaussian unitary ensemble.

References
[1] A. Borodin. Determinantal point processes. Oxford handbook of random matrix

theory, pp 231–249, Oxford Univ. Press, 2011.
[2] R. Lyons. Determinantal probability measures. Publ. Math. Inst. Hautes Études
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[3] A. Soshnikov. Determinantal random point fields. Uspekhi Mat. Nauk, 55(5(335)):107–

160, 2000.

S3: Mathematical foundations of deep neural networks (Rémi Gribonval, Au-
rélien Garivier, 18h). This course will provide a detailed overview of the mathematical
foundations of modern learning techniques based on deep neural networks. Starting with
the universal approximation property of neural networks, the course will then show why
depth improves the capacity of networks to provide accurate function approximations for
a given computational budget. Tools to address the optimization problems appearing
when training networks on large collections will then be covered, and their convergence
properties will be reviewed. Finally, statistical results on the generalization guarantees
of deep neural networks will be described, both in the classical underfitting scenario and
in the overfitting scenario leading to the so-called “double descent” phenomenon.

S4: Inverse problems and high dimension (Yohann de Castro, Rémi Gribon-
val, 18h). Sparsity and convexity are ubiquitous notions in Machine Learning and Sta-
tistics. In this course, we study the mathematical foundations of some powerful methods
based on convex relaxation: L1-regularisation techniques in Statistics and Signal Process-
ing; Nuclear Norm minimization in Matrix Completion; K-means and Graph Clustering.
These approaches turned to be Semi-Definite representable (SDP) and hence tractable
in practice. The theoretical part of the course will focus on the guarantees of these algo-
rithms under the sparsity assumption. The practical part of this cours will present the
standard SDP solvers of these learning problems.

Keywords: L1-regularisation; Matrix Completion; K-Means; Graph Clustering; Semi-
Definite Programming;

S5: Advanced machine learning theory (Laurent Jacob, Joseph Salmon, 18h).
Choosing an appropriate data representation is a key element in modern machine learn-
ing. While most existing learning algorithms manipulate vectors, important data types
including webpages, sequences or graphs do not admit a straightforward vectorial rep-
resentation. Other data types admit a natural vectorial encoding, but the resulting
representation is not necessarily appropriate for learning (this is the case for images).

This course will introduce positive definite kernels, a powerful mathematical framework
to create, analyze and manipulate data representation. Kernels are functions measuring
the similarity between pairs of objects. We will show how they implicitly define a mapping
of the data to a Hilbert space, and how this fact can be used to manipulate large or even
infinite sets of descriptors. We will specifically discuss how these kernels can be used in
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supervised and unsupervised learning algorithms, and provide examples of kernels defined
on sequences and graphs. Finally, we will consider how this framework can shed some
light on convolutional neural networks.

Keywords: positive definite kernel, RKHS, kernel methods, sequences, graphs, libsvm,
large scale learning, deep kernel machines.


