
MA2 2021-2022

Partial Differential Equations

and Applications

This program aims to prepare students for research in the field of theoret-
ical and numerical analysis of problems involving partial differential equations
(PDEs). It has three components:

1. Refresher Courses in the first 2.5 weeks aimed at ensuring a common
knowledge base for students from various mathematical backgrounds.
These courses are optional but very strongly advised.

2. Three Basic Courses which offer a broad introduction to the analysis tech-
niques of a large class of partial differential equations.

3. Four Advanced Courses on subjects closely related to current research: the
analysis of equations with stochastic components, the mean-field problem
in quantum mechanics, the optimal transport theory for parabolic equa-
tions, and numerical methods for approximation of PDEs.

The advanced courses will particularly welcome the participation of PhD stu-
dents and colleagues.
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1 Refresher Courses

Basic tools of functional analysis, Simon Masnou (16h)

1. Duality: Hahn-Banach theorem, weak and weak-* topologies, Lebesgue
spaces;

2. Distributions: weak derivatives, convolution, fundamental solutions of dif-
ferential operators;

3. Fourier transform;

4. Sobolev spaces: embeddings, extension and traces, compactness;

5. Weak solutions of PDEs;

6. Spectral analysis in Hilbert spaces.

Stochastic tools, Grégory Miermont (15h)

1. Discrete time martingales: stopping theorems and convergence. Exten-
sions for continuous time martingales.

2. Construction of Brownian motion. Regularity of trajectories.

3. Some properties of Brownian trajectories. Connection with the heat equa-
tion.

Starting with PDEs, Francesco Fanelli (16h)

1. Introduction: classifications of PDEs, symbols, notions of solutions.

2. The Laplace equation and second order elliptic operators.

3. The heat equation and second order parabolic operators.

4. Hyperbolic operators.

5. Semigroup theory and applications.
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2 Basic Courses

Evolution equations, Emmanuel Grenier (24h)

The aim of these lectures is to study some of the following evolution equations:

1. reaction-diffusion

2. hyperbolic systems of conservation laws

3. parabolic equations

4. simple kinetic equations

5. Euler and Navier-Stokes equations.

We will investigate existence, uniqueness, smoothness and qualitative properties
of the corresponding solutions.

Calculus of variations and elliptic equations,
Filippo Santambrogio (24h)

The course will be mainly devoted to the study of the minimizers of integral
functionals, their existence, their regularity, and their characterization in terms
of solutions of some partial differential equations, but regularity results for the
equations themselves will also be presented for their own interest.
The course will be roughly structured into 10 classes as follows:

1. Introduction and 1D examples of 1D variational problems (geodesics, brachis-
tochrone, economical growth models) and their applications, tools for ex-
istence, Euler-Lagrange equation (both in 1D and in higher dimension).

2. Convexity and semicontinuity conditions to ensure the semicontinuity for
the weak Sobolev convergence of integral functionals and applications to
existence results. Notions of convex analysis (Fenchel-Legendre trans-
forms, subdifferentials. . . ).

3. Convex duality duality for some “simple” convex variational problems.

4. Regularity via duality application of convex duality to some H1 regularity
results.

5. Harmonic functions and distributions main properties of the solutions of
∆u = 0.

6. Lp estimates for the Poisson equation. Proof by interpolation of the result
∆u = f , f ∈ Lp ⇒ u ∈W 2,p.
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7. Hölder regularity with smooth coefficients. Morrey-Campanato spaces and
applications to the result ∇·(a(x)∇u) = ∇·F , a, F ∈ Ck,α ⇒ u ∈ Ck+1,α.

8. Hölder regularity with bounded coefficients. Proof by Moser’s iterations of
the De Giorgi regularity result ∇·(a(x)∇u) = 0, a bounded and uniformly
elliptic but not smooth ⇒ u ∈ C0,α and applications to the solution of
the 19th Hilbert problem.

9. Γ−convergence and examples. The general theory of the Γ−convergence
for the limits of variational problems and some example, in particular the
optimal quantization of measures (aka optimal location problem).

10. BV functions, perimeters, and the Modica-Mortola functional. Few words
about the space BV and its role in defining sets of finite perimeter. Proof
of the Γ−convergence of the functionals

∫
ε|∇u|2 + ε−1W (u) towards the

perimeter functional.

A detailed bibliography and a list of exercises will be provided.

The knowledge of some functional analysis (in particular, compactness for weak-
* convergence and Sobolev spaces) and some measure theory is the main pre-
requisite for the course.

Discontinuous finite-element methods and applications ,
Daniel Le Roux (24h)

The goal of the proposed course is to describe the Discontinuous Galerkin meth-
ods and to discuss their main features and applications. We concentrate on the
exposition of the ideas behind the devising of these methods as well as on the
mechanisms that allow them to perform so well in a variety of problems: hy-
perbolic, elliptic and parabolic. Completely discontinuous approximations are
highly parallelizable, they easily handle irregular meshes with hanging nodes
and approximations that have polynomials of different degrees in different ele-
ments. Moreover, the methods are locally conservative, stable, and high-order
accurate. Finally, when applied to non-linear hyperbolic problems, the discon-
tinuous Galerkin methods are able to capture highly complex solutions present-
ing discontinuities with high resolution.

The course is intented to be divided in four parts.

• The first part is dedicated to the continuous finite-element method. We
start by explaining what mixed methods are. To this aim, by employing
the Stokes problem for viscous incompressible flow as an example, we write
down the corresponding minimization problem and thanks to the duality
methods we come up with a saddle point problem. A few results for mixed
methods are then presented for both the abstract and discrete settings:
existence, uniqueness and stability of the solution and error estimates.
Stabilization procedures (SUPG, GLS etc. methods) aiming to prevent the
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appearence of spurious solutions at the discrete level are finally presented.
This makes the link with the discontinuous Galerkin methods, which may
be regarded somehow as stabilized finite-element methods.

• In the second part, we introduce the Discontinuous Galerkin methods
for hyperbolic problems. First, in 1D starting with the linear transport
equation, and secondly with the linear 2D shallow-water system. In both
cases, the discontinuous variational formulation is introduced with the
appropriate numerical traces, and the stability of the solutions and error
estimates are discussed. Fourier analyses complete the study by computing
the dispersion relations at the discrete level for the frequencies, bringing
additional informations about the stability and accuracy of the computed
solutions. Numerical results illustrate the theoretical results

• In the third part, the linear 1D Poisson problem and 2D heat equation
are examined by following the same methodology and approach than in
the second part. We show how to rewrite second order problems in the
context of discontinuous methods to ensure a well-posed problem. The
choice of the numerical traces is now more delicate than in the case of
hyberbolic problems. The LDG (Local Discontinuous Galerkin) method
ensuring stability is chosen for the traces in the Fourier analysis.

• Finally, in the last part of the course, time discretization methods and
non linear problems are investigated. In particular the non linear shallow
water model is discretized and we show how to compute the numerical
traces efficiently by using the PVM (Polynomial Viscosity Method). Nu-
merical results of the propagation of Rossby waves for environmental flows
illustrate the capability of the Dicontinuous Galerkin method to handle
serious problems.
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3 Advanced Courses

Stochastic PDEs and their asymptotic behaviour,
Alexandre Boritchev (18h)

This course, although part of the PDE program, could also interest students in
probability theory; for more information, see the prerequisites listed at the end
of the description.

The main technicalities come from the complex interplay between the regu-
larity of the solution to the deterministic equation and that of the noise. We also
give some key notions on long-term behaviour of solutions and on the role of the
stationary measure. The latter is a probability measure on a functional space
which is the random counterpart of a stationary solution for a deterministic
equation.

This is a course which introduces many new concepts: therefore we will
follow a plan which underlines the differences and similarities between the
finite-dimensional situation (stochastic ODEs) and the infinite-dimensional one
(stochastic PDEs).

We use heavily the material from all refresher courses: ”Basic tools of func-
tional analysis” (convolution, Sobolev spaces...), ”Stochastic tools” (Brownian
motion and regularity of its trajectories), ”Starting with PDEs” (parabolic equa-
tions, semigroup formalism), as well as from the ”Evolution equations” course.

1. Introduction:

• Wiener process: a reminder. Regularity of the trajectories.

• The Markov property: how does it work?

2. SDEs:

• What is a stochastic differential equation (SDE)? Two points of view:
ODEs with random coefficients and through the Itô integral.

• The Markov semigroup on the space of probability measures.

• Stationary measure and convergence to the equilibrium.

• Example: the Ornstein-Uhlenbeck equation.

3. An introduction to SPDEs:

• What is a stochastic partial differential equation (SPDE)?

• The Markov semigroup on the space of probability measures in a
Banach space.

• Stationary measure and convergence to the equilibrium.

• Examples: the stochastic heat and Burgers equations.
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• More involved example (if time allows): the stochastic 2D incom-
pressible Navier-Stokes system.

Optimal transport theory and links with parabolic equa-
tions, Ivan Gentil (18h)

Goal of the course : The goal of this course is to introduce the Wasserstein
distance between two probability measures. This distance has many recent
developments. For instance, this is a natural distance to show the asymptotic
behavior of evolutional PDE, asymptotic behavior of stochastic process, to show
concentration inequalities, and also to prove that the heat equation is the gra-
dient flow of the Boltzmann entropy with respect to the Wasserstein metric.

We will see in this course analytic properties of the Wasserstein distance and
also links between parabolic PDE and optimal transport. Parabolic PDE can
be seen in this context as the law of diffusion Markov processes, solutions of
SDE driven by a Brownian motion.

Table of contents

1. Properties of the Wasserstein distance between two probabilities measures.

(a) Optimal transportation, Monge and Monge-Kantorovich problems.

(b) Properties of the Wasserstein space, in particular its geodesic prop-
erty.

(c) Duality of Kantorovich.

(d) Brenier’s Theorem and proof of the optimal Sobolev inequality by
using the optimal transport.

2. Links between parabolic PDE and Otto calculus.

(a) Notion of operator’s curvature.

(b) Von Renesse-Sturm’s Theorem : equivalence between curvature of an
operator and the contraction in Wasserstein distance.

(c) Heat equation as a gradient flow of the entropy with respect to the
Wasserstein metric, introduction of the Otto Calculus.

Some references

1. L. Ambrosio, N. Gigli, and G. Savaré. Gradient flows in metric spaces
and in the space of probability measures. Lectures in Mathematics ETH
Zürich. Birkhäuser Verlag, Basel, 2005.

2. D. Bakry, I. Gentil et M. Ledoux. Analysis and geometry of Markov dif-
fusion operators, volume 348 of Grundlehren der Mathematischen Wis-
senschaften. Springer, Cham, 2014.
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3. C. Villani – Topics in optimal transportation, Graduate Studies in Math-
ematics, vol. 58, American Mathematical Society, Providence, RI, 2003.

4. C. Villani Optimal transport, Grundlehren der Mathematischen Wissenschaften,
vol. 338, Springer-Verlag, Berlin, 2009, Old and new.

Many-body quantum mechanics and mean-field limits,
Nicolas Rougerie (18h)

How and why could an interacting system of many particles be described as if
all particles were independent and identically distributed ? This question is at
least as old as statistical mechanics itself. Presupposing the answer, it leads to
the mean-field approximation: particles are assumed to follow a single statistical
law that interacts with itself via the mean interaction generated by the other
particles.

In this course we shall study various mathematical techniques allowing to
vindicate the validity of the mean-field approximation in a reasonable macro-
scopic limit of large particle number. We will focus on energy minimizers/ground
states of the basic many-body Hamiltonian and prove that they do behave as if
all particles were independent and identically distributed.

Topics we plan to cover include:

• Recap of basic spectral theory and functional analysis. Self-adjointness of
a Schrödinger Hamiltonian.

• Review of many-body quantum mechanics. Symmetry types of quantum
particles, bosons and fermions. Second quantized formalism.

• Study of mean-field models: non-linear Schrödinger equation (mostly static),
Thomas-Fermi type models.

• The de Finetti-Hewitt-Savage theorem in statistical mechanics. Proof ac-
cording to Diaconis and Freedman.

• Mean-field limits of classical equilibrium states.

• Basic tools in mathematical quantum mechanics: Onsager’s lemma, Hoffmann-
Ostenhof inequality, Lieb-Thirring and Lieb-Oxford inequality ...

• Coherent state formalism for large bosonic systems and quantum de Finetti
theorem.

• Semi-classical limit of large fermionic systems.

The course will borrow from review papers/lecture notes available at:

https://arxiv.org/abs/2002.02678
https://arxiv.org/abs/1506.05263
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The course will follow a different path however, proofs will be much more
detailed and basic mathematical tools will be recaped more thoroughly.

Prerequisites : It is desirable, although not absolutely necessary, to have
followed the course Calculus of variations and elliptic equations (by Filippo
Santambrogio).

Numerical approximation methods for fluid mechanics,
Khaled Saleh (18h)

A first objective of this course is to present recent methods for the numerical
approximation of fluid mechanics models. The considered numerical schemes are
used in industrial codes. They are designed so as to mimic the main properties
satisfied by the exact solutions: positivity of the density, mass and momentum
conservation, energy estimates, etc. A second objective of the course is to
establish the convergence of the numerical schemes by following the lines of
the theory of existence of weak solutions for the considered PDE models. For
this purpose, famous functional analysis results must be adapted to discrete
functional spaces.

Contents of the course:

1. PDE models in fluid mechanics: compressible Navier-Stokes and Euler
systems. Incompressible models.

2. Study of the incompressible Stokes model. Well-posedness for weak solu-
tions. Analysis of a finite element numerical scheme: a priori estimates,
compactness is assumed at this level, convergence of the approximate so-
lutions towards the exact weak solution.

3. Discrete functional analysis. We prove continuous/compact embedding
results for discrete functional spaces arising from the numerical discretiza-
tion. These are discrete counterparts to the famous Sobolev continuous
embedding and Rellich’s compact embedding theorems.

4. Numerical analysis of a finite volume - finite element numerical scheme for
the compressible Navier-Stokes equations: positivity and energy estimates,
convergence of the numerical method (compactness, passing to the limit
in non-linear terms with only weak convergence) for the stationary model.

5. Non stationary models. Compactness in time: Aubin-Simon theorem and
its discrete counterpart. Study of a numerical scheme for the non station-
ary Stokes model.
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