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Partial Differential Equations
and Applications

This program aims to prepare students for research in the field of theoret-
ical and numerical analysis of problems involving partial differential equations
(PDEs). It has three components:

1. Refresher Courses in the first 2.5 weeks aimed at ensuring a common
knowledge base for students from various mathematical backgrounds.
These courses are optional but very strongly advised.

2. Three Basic Courses which offer a broad introduction to the analysis tech-
niques of a large class of partial differential equations.

3. Four Advanced Courses on subjects closely related to current research:
optimal transport, the Navier-Stokes equation, the mean-field theory in
quantum mechanics, and numerical methods for fluid equations.

The advanced courses will particularly welcome the participation of PhD stu-
dents and colleagues.

.
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1 Refresher Courses

Basic tools of functional analysis, Mikael De La Salle (16h)

1. Duality: Hahn-Banach theorem, weak and weak-* topologies, Lebesgue
spaces;

2. Distributions: weak derivatives, convolution, fundamental solutions of dif-
ferential operators;

3. Fourier transform;

4. Sobolev spaces: embeddings, extension and traces, compactness;

5. Weak solutions of PDEs;

6. Spectral analysis in Hilbert spaces.

Starting with PDEs, Francesco Fanelli (16h)

1. Introduction: classifications of PDEs, symbols, notions of solutions.

2. The Laplace equation and second order elliptic operators.

3. The heat equation and second order parabolic operators.

4. Hyperbolic operators.

5. Semigroup theory and applications.

Stochastic tools, ? (15h)

1. Discrete time martingales: stopping theorems and convergence. Exten-
sions for continuous time martingales.

2. Construction of Brownian motion. Regularity of trajectories.

3. Some properties of Brownian trajectories. Connection with the heat equa-
tion.
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2 Basic Courses

Evolutionary PDEs, Dragos Iftimie (24h)

1. Some properties and reminders of distributions.

2. The Cauchy problem for linear PDEs.

(a) Variable coefficients. Cauchy-Kovalevskaya theorem, characteristic
hypersurfaces and Holmgren’s uniqueness theorem. Well-posed prob-
lems.

(b) Constant coefficients.

• Existence of an elementary solution, the Malgrange-Ehrenpreis
theorem. Examples. Necessary and sufficient conditions for hy-
poellipticity.

• Local resolubility of the Cauchy problem. Hyperbolicity. Gård-
ing’s theorem. Necessary and sufficient conditions for hyperbol-
icity.

3. Dispersive PDEs.

(a) A few linear dispersive PDEs and their explicit solutions.

(b) Non linear Schrödinger equation. Strichartz estimates and some well-
posedness results for the Cauchy problem.

4. Symmetric hyperbolic quasilinear systems. Incompressible Euler equa-
tions. H3 solutions and the Beale-Kato-Majda blow-up criterion.

5. Incompressible Navier-Stokes equations. Leray solutions. Uniqueness for
small data in dimension 3.

Discontinuous finite-element methods and applications,
Daniel Le Roux (24h)

The goal of the proposed course is to describe the Discontinuous Galerkin meth-
ods and to discuss their main features and applications. We concentrate on the
exposition of the ideas behind the devising of these methods as well as on the
mechanisms that allow them to perform so well in a variety of problems: hy-
perbolic, elliptic and parabolic. Completely discontinuous approximations are
highly parallelizable, they easily handle irregular meshes with hanging nodes
and approximations that have polynomials of different degrees in different ele-
ments. Moreover, the methods are locally conservative, stable, and high-order
accurate. Finally, when applied to non-linear hyperbolic problems, the discon-
tinuous Galerkin methods are able to capture highly complex solutions present-
ing discontinuities with high resolution.

The course is intented to be divided in four parts.
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• The first part is dedicated to the continuous finite-element method. We
start by explaining what mixed methods are. To this aim, by employing
the Stokes problem for viscous incompressible flow as an example, we write
down the corresponding minimization problem and thanks to the duality
methods we come up with a saddle point problem. A few results for mixed
methods are then presented for both the abstract and discrete settings:
existence, uniqueness and stability of the solution and error estimates.
Stabilization procedures (SUPG, GLS etc. methods) aiming to prevent the
appearence of spurious solutions at the discrete level are finally presented.
This makes the link with the discontinuous Galerkin methods, which may
be regarded somehow as stabilized finite-element methods.

• In the second part, we introduce the Discontinuous Galerkin methods
for hyperbolic problems. First, in 1D starting with the linear transport
equation, and secondly with the linear 2D shallow-water system. In both
cases, the discontinuous variational formulation is introduced with the
appropriate numerical traces, and the stability of the solutions and error
estimates are discussed. Fourier analyses complete the study by computing
the dispersion relations at the discrete level for the frequencies, bringing
additional informations about the stability and accuracy of the computed
solutions. Numerical results illustrate the theoretical results

• In the third part, the linear 1D Poisson problem and 2D heat equation
are examined by following the same methodology and approach than in
the second part. We show how to rewrite second order problems in the
context of discontinuous methods to ensure a well-posed problem. The
choice of the numerical traces is now more delicate than in the case of
hyberbolic problems. The LDG (Local Discontinuous Galerkin) method
ensuring stability is chosen for the traces in the Fourier analysis.

• Finally, in the last part of the course, time discretization methods and
non linear problems are investigated. In particular the non linear shallow
water model is discretized and we show how to compute the numerical
traces efficiently by using the PVM (Polynomial Viscosity Method). Nu-
merical results of the propagation of Rossby waves for environmental flows
illustrate the capability of the Dicontinuous Galerkin method to handle
serious problems.

Calculus of variations and elliptic partial differential equa-
tions and systems, Petru Mironescu (24h)

Description. This is an intermediate + course presenting some basic tools in
the qualitative analysis, existence, and regularity theory for solutions of elliptic
partial differential equations (PDEs). A first part, related to the direct method
in the calculus of variations, goes beyond elliptic PDEs.

Prerequisites

1. Good knowledge of general measure theory and integration.
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2. Reasonable knowledge of geometric aspects of the integration theory (Gauss-
Ostrogradskii...) and of the local theory of submanifolds of Rn.

3. Good knowledge of the basic results concerning the Laplace equation.

Syllabus

1. The direct method in the calculus of variations

(a) Basic examples.

(b) Notions of convexity.

(c) Passing to the weak limits in nonlinear quantities. Compensation
phenomena.

(d) Gap phenomena.

2. Maximum principles and applications

(a) Maximum principles for elliptic partial differential equations (PDEs)
in non divergence and divergence form.

(b) Iterative methods based on monotonicity (sub- and supersolutions).

(c) Symmetry properties of solutions of semilinear elliptic PDEs.

(d) Krasnoselskii’s uniqueness result.

3. Regularity theory

(a) Serrin’s example.

(b) Singular integrals.

(c) Lp-theory for elliptic equations in non-divergence form.

(d) A glimpse of the Cα-theory for elliptic equations in non-divergence
form.

(e) De Giorgi-Nash regularity theory for elliptic equations in divergence
form.

(f) Bootstrap. Regularity in the critical case.

(g) Equations with L1 or measure right-hand side.

(h) A limiting case: Wente estimates. A glimpse of other compensation
phenomena.

4. Other existence methods

(a) Continuation methods for semilinear elliptic PDEs.

(b) Crandall-Rabinowitz bifurcation from simple eigenvalues.

(c) Concentration-compactness (sketch).

(d) A glimpse of the Lyapunov-Schmidt reduction.

(e) Mountain pass solutions. A glimpse of other topological methods.

5. Vector-valued problems

(a) Hélein’s two-dimensional regularity theorem (S2-case).
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(b) A glimpse of Rivière’s three-dimensional example.

(c) A glimpse of the Schoen-Uhlenbeck (Hardt-Lin) regularity theory for
harmonic maps, with a focus on the salient points: clearing out (δ-
regularity) and Federer’s dimensional reduction argument.

(d) Notions of weak solutions: kinetic formulation, entropies.

6. A glimpse of phase-transition problems

(a) A glimpse of the BV space.

(b) Abstract Γ-convergence.

(c) The Modica-Mortola functional in limit ε→ 0.

(d) Vector-valued variants. A glimpse of the (simplified) Ginzburg-Landau
theories.
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3 Advanced Courses

Optimal transport: introduction, applications and deriva-
tion, Aymeric Baradat (18h)

The starting point of this course will be to introduce the optimal transport
problem between two probability measures on a physical space (such as subsets
of Euclidean spaces) both in a static and in a dynamical version. We will see
that the dynamical one gives a way to interpret formally the set of probability
measures as an infinite dimensional Riemannian manifold, and we will discuss
the corresponding notion of gradient flows as well as some properties of the
geodesics. We will also see how the induced distance (the so-called Wasserstein
distance) can be used to get contraction estimates in some nonlinear PDEs of
Vlasov type.

In a last part, we will show how to recover optimal transport as the limit
when the diffusivity tends to zero of the problem of minimizing the relative
entropy w.r.t. the law of a Brownian motion under marginal constraints: this is
the so-called entropic regularization of optimal transport. In addition to build-
ing a bridge between the theories of optimal transport and of large deviations
of stochastic processes, this approach provides a way to compute efficiently ap-
proximated solutions thanks to the Sinkhorn algorithm.

The first two parts of the lecture will demand very few prerequisites except
from notions of measure theory and basic knowledge in functional analysis.
For the last part, it is better to be familiar with stochastic processes, and in
particular with the Brownian motion.

The outline of the course will be as follows.

1. The static optimal transport problem

• The Monge formulation and its relaxation, the Monge-Kantorovich
problem

• The Brenier theorem
• The Wasserstein distance between probability measures

2. A dynamic reformulation: the Benamou-Brenier approach

• The theory of the continuity equation
• The Benamou-Brenier formulation of optimal transport
• A formal introduction to gradient flows
• Geodesic convexity and applications
• The Wasserstein distance for nonlinear PDEs of Vlasov type

3. Entropy minimization w.r.t. the law of a Brownian motion

• Statement of the Schrödinger problem
• Static and Benamou-Brenier reformulation
• The Sinkhorn algorithm
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• Γ-convergence towards optimal transport

I will provide a detailed bibliography during the lecture.

Compressible Viscous Flows with Low or Intermediate Reg-
ularity,
Didier Bresch (18h)

Motivation: The Navier-Stokes equations provide a basic mathematical model
for describing the motion of a fluid. In the famous paper published in Acta Math-
ematica in 1934, “Sur le mouvement d’un fluide visqueux remplissant l’espace”,
Jean Leray (1906-1998) introduced the concept of weak solutions (and to do this,
he also defined what is now called a Sobolev space), by giving a precise definition
of what an irregular solution of the system is, and showed that there is such a
weak solution for the homogeneous incompressible Navier-Stokes equations (see
the Evolutinary PDEs basic course by D. Iftimie) .

We now call these solutions of minimal regularity (finite energy): solutions
à la Leray. Even if the global existence of weak solutions does little about the
well-posed character of the system, such an analysis has many practical interests
and may help for intermediate regularity purposes. In addition to the physi-
cal meaning, because the regularity of the initial data assumed is minimal and
strongly related to well-identified physical quantities, the stability properties
of weak solutions on the continuous model help to better understand how to
properly build stable numerical schemes that more often do not preserve strong
regularity estimates (see works by T. Gallouet, R. Herbin, J.-C. Latché, E.
Feireisl, T.G. Karper, A. Novotny and K. Saleh for instance). An other impor-
tant kind of solutions (Hoff solutions) is the one with intermediate regularity
where we allow density profile jumps with more informations on the velocity
field.

Goal of the Course: This course aims at presenting some recent results re-
lated to the viscous compressible flows with low or intermediate regularity. We
will compare the two notions of solutions. We will see that depending on the sit-
uations, different mathematical techniques have to be developed turning around
transport equation with rough velocity fields.
Topics we plan to cover include:

• Compressible Navier-Stokes equations with density dependent viscosities:
Nonlinear hypocoercivity properties and energy-entropy weak solutions.

• Compressible Navier-Stokes equations with non-monotone pressure laws:
Appropriate weights in a non-local compactness tool.

• Compressible Navier-Stokes equations with an anisotropic viscous tensor:
Hoff solutions with intermediate regularity in an Lp framework.

We will explain the physical motivations before describing some mathemat-
ical tools on simplified systems. It could be nice to know the introductory book
by L.C. Evans on compactness: Weak convergence methods for nonlinear partial
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differential equations. Volume 74, CBMS Regional Conference series in Math,
1990. I will provide a detailed bibliography during the lecture (see also the
Refresher Course by M. De La Salle).

Many-body quantum mechanics and mean-field limits,
Nicolas Rougerie (18h)

How and why could an interacting system of many particles be described as if
all particles were independent and identically distributed ? This question is at
least as old as statistical mechanics itself. Presupposing the answer, it leads to
the mean-field approximation: particles are assumed to follow a single statistical
law that interacts with itself via the mean interaction generated by the other
particles.

In this course we shall study various mathematical techniques allowing to
vindicate the validity of the mean-field approximation in a reasonable macro-
scopic limit of large particle number. We will focus on energy minimizers/ground
states of the basic many-body Hamiltonian and prove that they do behave as if
all particles were independent and identically distributed.

Topics we plan to cover include:

• Recap of basic spectral theory and functional analysis. Self-adjointness of
a Schrödinger Hamiltonian.

• Review of many-body quantum mechanics. Symmetry types of quantum
particles, bosons and fermions. Second quantized formalism.

• Study of mean-field models: non-linear Schrödinger equation (mostly static),
Thomas-Fermi type models.

• The de Finetti-Hewitt-Savage theorem in statistical mechanics. Proof ac-
cording to Diaconis and Freedman.

• Mean-field limits of classical equilibrium states.

• Basic tools in mathematical quantummechanics: Onsager’s lemma, Hoffmann-
Ostenhof inequality, Lieb-Thirring and Lieb-Oxford inequality ...

• Coherent state formalism for large bosonic systems and quantum de Finetti
theorem.

• Semi-classical limit of large fermionic systems.

The course will borrow from review papers/lecture notes available at:
https://arxiv.org/abs/2002.02678
https://arxiv.org/abs/1506.05263
The course will follow a different path however, proofs will be much more

detailed and basic mathematical tools will be recaped more thoroughly.
Prerequisites : It is desirable, although not absolutely necessary, to have

followed the course “Calculus of variations and elliptic partial differential equa-
tions and systems” (by Petru Mironescu).
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Kinetic equations with collisions,
Cédric Villani (18h)

A review of the kinetic theory with collision stemming from the works by
Maxwell and Boltzmann, with a mixture of informal modeling, physical consid-
erations, and analysis.

Program

1. The theory by Maxwell and Boltzmann

2. An overview of the problems and the variants

3. Lanford Theory

4. Analysis of the Boltzmann equation

5. t→ ∞

6. Collision theory for plasmas

References :

• C. Villani A Review of Mathematical Topics in Collisional Kinetic The-
ory, in Handbook of Mathematical Fluid Dynamics, Vol. 1, S. Friedlander,
D. Serre (eds), pages 71–305, 2002.

• C. Villani Landau damping in Modèles numériques pour la fusion, Panorama
et Synthèses, pages 237-326, 2013.
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