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1. Overview of the MA2

Courses are organized in thematic programs, and there will be three such programs,
described in detail below. The calendar is roughly as follows.

• Refresher courses. August 31st–mid September 2020
• Basic courses. September–December 2020
• Advanced courses. January–March 2021
• Research internship. April–July 2021

2. Number theory and arithmetic geometry

This program consists of six courses. The first three courses will take place during
the first semester and cover the fundamentals of algebraic geometry and of the theory of
modular forms. The other three courses will take place during the second semester and
cover a broader range of techniques of number theory and arithmetic geometry.

Modular and automorphic forms (Gabriel Dospinescu, 24h). This course is an
introduction to the theory of automorphic forms and representations of real reductive
groups. These objects play a fundamental role in modern arithmetic, via the Langlands
program. Their study is a mixture of analysis, representation theory and arithmetic, and
the goal of the course is to explain several points of view on these objects, as well as to
prove some classical results concerning them (for instance some deep finiteness theorems
due to Harish-Chandra, or the results of Cartan and Mostow on the structure of real
reductive groups). Depending on time, we will discuss a subset of the following set of
themes:

• classical modular forms (examples, arithmetic applications, L-functions).
• unitary representations of real reductive groups.
• the decomposition of L2(Γ\G(R)) for an arithmetic subgroup Γ of a reductive
group over Q.
• automorphic forms and adèles.

[1] D. Bump Automorphic forms and representations, Cambridge University Press 1997
[2] S. Gelbart Automorphic forms on adele groups, Annals of Maths Studies, Vol. 83
[3] H. Jacquet, R. Langlands Automorphic forms on GL2, Lecture notes in maths, 1970
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The fundamental group in arithmetic geometry (Philippe Gille, 24h). There is
a deep analogy between Galois theory and the theory of covers of topological spaces. The
guiding principle of the course is to pursue that analogy toward Grothendieck’s theory of
the fundamental group in algebraic geometry, in connection with Sophie Morel’s course.
The course will start with the modern viewpoint on Galois theory: étale/Galois algebras,
profinite groups, . . . Étale finite morphisms and fibre functors are the main ingredients
of the theory of the fundamental group in algebraic geometry. We shall discuss various
examples (e.g. discrete valuation rings, local rings, Dedekind rings, . . . ).
[1] J.-B. Bost, F. Loeser, M. Raynaud Courbes semi-stables et groupe fondamental en
géometrie algébrique, Progress in Math. 187 (2000), Birkhäuser.
[2] A. Grothendieck SGA 1.
[3] S. Lang, J.P. Serre Sur les revêtements non ramifiés des variétés algébriques, Amer.
J. Math. 79 (1957), 319-330.
[4] T. Szamuely Galois groups and fundamental groups, Cambridge University Press.
[5] The Stacks Project.

Modern algebraic geometry (Sophie Morel, 24h). This course is an introduction
to the theory of schemes, aiming to cover the contents of Chapters II and III of [1]. More
precisely, here is a list of topics that will hopefully be covered (the order of the topics
may change):

• Definition of schemes.
• Global properties of schemes (noetherian, irreducible, reduced, projective schemes).
• Dimension.
• Global properties of morphisms of schemes (morphisms of finite type, separated,
proper, projective morphisms).
• Local properties of schemes and of morphisms of schemes (normal and regular
schemes, flat, smooth and Ètale morphisms).
• Zariski’s main theorem.
• Quasi-coherent sheaves.
• Kähler differentials.
• Cohomology of quasi-coherent sheaves, flat base change, Serre duality.

[1] R. Hartshorne Algebraic geometry, Graduate Texts in Mathematics, No. 52 (1977).

The stack of vector bundles on a curve (Vincent Pilloni, 24h). Moduli spaces
play an important role in arithmetic geometry: moduli spaces of curves, abelian varieties,
Shimura varieties, Jacobians, stack of vector bundles on a curve, stack of Shtukas. In
particular, the conjectural Langlands correspondence is often formulated with the help
of these spaces.

The first part of the course will be an introduction to the language of algebraic stacks.
This theory relies on the theory of schemes that will be studied during the first semes-
ter. This language is well adapted to the study of many moduli problems that are not
representable by schemes.

The second part of the course will be dedicated to a detailed study of the stack of
vector bundles on an algebraic curve. We will talk about the following subjects: Hilbert
schemes, Harder-Narasimhan filtrations, algebraicity of the stack, smoothness, dimension,
affine grassmanian, uniformization. . .

If time permits, in the last part of the course we will talk about: geometric class field
theory, introduction to the geometric Langlands program, Shtukas.
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[1] V.G. Drinfeld et C Simpson B-structures on G bundles and local triviality, Math Res
Letter, 1995.
[2] A. Beauville et Y. Laszlo Un lemme de descente, Comptes Rendus Acad Sci Paris,
1995.
[3] A. Grothendieck Techniques de construction et théorèmes d’existence en géométrie
algébrique IV: les schémas de Hilbert. Séminaire Bourbaki 221, 1960/61.
[4] G. Laumon et L. Moret-Bailly Champs algébriques, Ergebnisse der Mathematik und
ihrer Grenzgebiete. 3. Folge / A Series of Modern Surveys in Mathematics, Springer,
2000.
[5] G. Laumon Travaux de Frenkel, Gaitsgory et Vilonen sur la correspondance de Drinfeld-
Langlands, Séminaire Bourbaki: volume 2001/2002, exposés 894-908, Astérisque, no. 290
(2003), Exposé no. 906, p. 267-284.
[6] C. Sorger Lectures on moduli of principal G-bundles over algebraic curves. In School
on Algebraic Geometry, (Trieste, 1999), volume 1 of ICTP Lect. Notes, pages 1-57.
Abdus Salam Int. Cent. Theoret. Phys., Trieste, 2000.
[7] X. Zhu An introduction to affine Grassmannians and the geometric Satake equivalence,
IAS/Park City Mathematics Series.
[8] The Stacks Project.

An introduction to Drinfeld modules (Tuan Ngo Dac and Federico Pellarin,
24h). Drinfeld modules were invented by Drinfeld (1974) in his proof of the Langlands
correspondence for GL(2) over function fields in some special cases. The goal of this
course is to introduce these objects and to explain their applications to explicit class field
theory and to the Langlands correspondence over function fields.

In the first part we focus on explicit class field theory for global fields of positive
characteristic. Let F be such a global function field and let F ab be its maximal abelian
extension. The work of David Hayes allows to construct a continuous homomorphism ρ
from the Galois group of F ab/F to the idèle class group of F . In fact, by using class field
theory it is possible to go further, by showing that ρ is an isomorphism of topological
groups, the inverse of which is the Artin map. The proof uses normalised Drinfeld modules
of rank 1 and their torsion points in a way which is analogous to that of Kronecker-Weber
theorem, where the torsion of the multiplicative group allows to generate Qab/Q.

In the second part we study Drinfeld modular varieties which classify Drinfeld modules
of fixed rank. They play the role of Shimura varieties. We recall the construction and
the basic properties of these varieties. Then we review the theory of Drinfeld modules
in finite characteristic. As an application, we obtain a formula counting the number of
fixed points under the action of the Frobenius and a Hecke operator. Finally we relate
this number to the Arthur-Selberg trace formula for some test functions.
[1] D. Goss Basic Structures of Function Field Arithmetic, volume 35 of Ergebnisse der
Mathematik und ihrer Grenzgebeite. Springer-Verlag, Berlin, 1996.
[2] G. Laumon Cohomology of Drinfeld modular varieties. Part I, volume 41 of Cam-
bridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge, 1996.
Geometry, counting of points and local harmonic analysis.
[3] G. Laumon Cohomology of Drinfeld modular varieties. Part II, volume 56 of Cam-
bridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge, 1997.
Automorphic forms, trace formulas and Langlands correspondence, With an appendix by
Jean-Loup Waldspurger.
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The Arthur-Selberg trace formula and the local Jacquet-Langlands correspon-
dence (Olivier Taïbi, 24h). The Arthur-Selberg trace formula is a fruitful tool for the
Langlands programme. It gives a “geometric” expression for the trace of a trace function
acting on a space of automorphic forms, in terms of orbital integrals. In the lectures
we will first study smooth representations of GL2(Qp) and its harmonic analysis. Then
we will prove (a special case of) the trace formula and use it to prove a case of the lo-
cal Jacquet-Langlands correspondence, between representations of GL2(Qp) and of D×
where D is a quaternion algebra over Qp. This kind of result is motivated by conjectures
of Langlands, linking automorphic representations and Galois representations, and useful
to prove cases of these conjectures (from “automorphic” to “Galois”).
[1] H. Jacquet et R. Langlands Automorphic forms on GL2, Lecture Notes in Mathematics,
Vol. 114, 1970.
[2] P. Deligne, D. Kazhdan et M.-F. Vignéras Représentations des algèbres centrales sim-
ples p-adiques, dans Representations of reductive groups over a local field, Travaux en
Cours, 1984.
[3] H. Jacquet, R. P. Langlands Automorphic forms on GL(2), Lecture Notes in Mathe-
matics, Vol. 114, Springer, 1970.
[4] P. Deligne, D. Kazhdan, D. and M.-F. Vignéras Représentations des algèbres centrales
simples p-adiques, Representations of reductive groups over a local field, Travaux en
Cours, 33–117, Hermann, Paris, 1984.

3. Partial differential equations and applications

This program aims to prepare students for research in the field of theoretical and
numerical analysis of problems involving partial differential equations (PDEs). It has
three components:

(1) Refresher courses (see §5) in the first two weeks aimed at ensuring a common
knowledge base for students from various mathematical backgrounds. These
courses are optional but very strongly advised.

(2) Three 24h basic courses which offer a broad introduction to the analysis techniques
of a large class of partial differential equations.

(3) Four 18h advanced courses on subjects closely related to current research: the
analysis of equations with stochastic components, numerical methods for approx-
imation of PDEs, the optimal transport theory for parabolic equations, and the
kinetic theory of gases.

The advanced courses will welcome the attendance of PhD students and colleagues.

Evolution equations (Emmanuel Grenier, 24h). The aim of these lectures is to
study some of the following evolution equations:

(1) reaction-diffusion
(2) hyperbolic systems of conservation laws
(3) parabolic equations
(4) simple kinetic equations
(5) Euler and Navier-Stokes equations.
We will investigate existence, uniqueness, smoothness and qualitative properties of the

corresponding solutions.
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Calculus of variations and elliptic equations (Filippo Santambrogio, 24h). The
course will be mainly devoted to the study of the minimizers of integral functionals, their
existence, their regularity, and their characterization in terms of solutions of some partial
differential equations, but regularity results for the equations themselves will also be
presented for their own interest. The course will be roughly structured into 8 classes as
follows:

(1) Introduction and 1D examples of 1D variational problems (geodesics, brachis-
tochrone, economical growth models) and their applications, tools for existence,
Euler-Lagrange equation (both in 1D and in higher dimension).

(2) Convexity and semicontinuity conditions to ensure the semicontinuity for the
weak Sobolev convergence of integral functionals and applications to existence
results. Notions of convex analysis (Fenchel-Legendre transforms, subdifferen-
tials. . . ).

(3) Convex duality and regularity duality for some “simple” variational problems
and application of convex duality to some H1 regularity result.

(4) Lp estimates for the Poisson equation. Proof by interpolation of the result
∆u = f , f ∈ Lp ⇒ u ∈ W 2,p.

(5) Hölder regularity with smooth coefficients. Morrey-Campanato spaces and
applications to the result ∇ · (a(x)∇u) = ∇ · F , a, F ∈ Ck,α ⇒ u ∈ Ck+1,α.

(6) Hölder regularity with bounded coefficients. Proof by Moser’s iterations of
the De Giorgi regularity result ∇·(a(x)∇u) = 0, a bounded and uniformly elliptic
but not smooth ⇒ u ∈ C0,α and applications to the solution of the 19th Hilbert
problem.

(7) Γ−convergence and examples. The general theory of the Γ−convergence for
the limits of variational problems and some example, in particular the optimal
quantization of measures (aka optimal location problem).

(8) BV functions, perimeters, and the Modica-Mortola functional. Few
words about the space BV and its role in defining sets of finite perimeter. Proof of
the Γ−convergence of the functionals

∫
ε|∇u|2 + ε−1W (u) towards the perimeter

functional.

A detailed bibliography and a list of exercises will be provided. The knowledge of
some functional analysis (in particular, compactness for weak-∗ convergence and Sobolev
spaces) and some measure theory is the main prerequisite for the course.

Approximation by PDEs (Julien Vovelle, 24h). In this course, we will see how
to understand and describe the large scale limit of various discrete evolution systems
(random and deterministic) with the help of partial differential equations. This will
be the occasion to use and discover some standard tools from the theory of PDEs, of
numerical analysis, and of statistical physics.

Contents:

(1) Martingale in continuous time
(2) Discrete conservation laws, systems of interacting particles and their asymptotic

description by PDEs
(3) Interacting particles systems; independent random walk; model of random inter-

face



6 MA2 2020-2021

(4) Discrete conservation laws (Finite Volume method); parabolic equations; hyper-
bolic equations; the case of the linear transport equation: optimal convergence
estimate by two different methods (deterministic/probabilistic).

Stochastic PDEs and their asymptotic behaviour (Alexandre Boritchev, 18h).
This course is on the interface between PDEs and probability theory. It is in some
way “complementary” with respect to the basic course given by Julien Vovelle, being
concerned with a more specific topic of PDEs with random noise. Nevertheless, the
notions of martingales in continuous time, Markov processes, invariant measures, seen in
the course of Julien Vovelle, will be used. The main technicalities come from the complex
interplay between the regularity of the solution to the deterministic equation and that of
the noise. We also give some key notions on long-term behaviour of solutions and on the
role of the stationary measure. The latter is a probability measure on a functional space
which is the random counterpart of a stationary solution for a deterministic equation.

This is a course which introduces many new concepts: therefore we will follow a plan
which underlines the differences and similarities between the finite-dimensional situation
(stochastic ODEs) and the infinite-dimensional one (stochastic PDEs).

We use heavily the material from refresher courses, especially the ones on “Basic tools of
functional analysis” (convolution, Sobolev spaces. . . ) and “Stochastic tools” (Brownian
motion and regularity of its trajectories).

(1) Introduction:
• Wiener process: a reminder. Regularity of the trajectories.
• Construction and properties of the Itô integral.

(2) SDEs:
• What is a stochastic differential equation (SDE)? Two points of view: ODEs
with random coefficients and through the Itô integral.
• Two Markov semigroups: on spaces of probability measures and of continuous
bounded functions.
• Invariant measure and convergence to the equilibrium.
• Example: the Langevin equation.

(3) An introduction to SPDEs:
• Itô integral in Hilbert spaces.
• What is a stochastic partial differential equation (SPDE)? Two points of
view: PDEs with random coefficients and through the Itô integral.
• Two Markov semigroups: on spaces of probability measures and of continuous
bounded functionals.
• Invariant measure and convergence to the equilibrium.
• Examples: the stochastic heat and Burgers equations.
• More involved examples (if time allows): the stochastic 2D incompressible
Navier-Stokes equation.

Optimal transport theory and links with parabolic equations (Ivan Gentil,
18h). Goal of the course: the goal of this course is to introduce the Wasserstein distance
between two probability measures. This distance has many recent developments. For
instance, this is a natural distance to show the asymptotic behavior of evolutional PDE,
asymptotic behavior of stochastic process, to show concentration inequalities, and also to
prove that the heat equation is the gradient flow of the Boltzmann entropy with respect
to the Wasserstein metric.
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We will see in this course analytic properties of the Wasserstein distance and also
links between parabolic PDE and optimal transport. Parabolic PDE can be seen in this
context as the law of diffusion Markov processes, solutions of SDE driven by a Brownian
motion. Table of contents:

(1) Properties of the Wasserstein distance between two probabilities measures.
(a) Optimal transportation, Monge and Monge-Kantorovich problems.
(b) Properties of the Wasserstein space, in particular its geodesic property.
(c) Duality of Kantorovich.
(d) Brenier’s Theorem and proof of the optimal Sobolev inequality by using the

optimal transport.
(2) Links between parabolic PDE and Otto calculus.

(a) Notion of operator’s curvature.
(b) Von Renesse-Sturm’s Theorem: equivalence between curvature of an operator

and the contraction in Wasserstein distance.
(c) Heat equation as a gradient flow of the entropy with respect to the Wasser-

stein metric, introduction of the Otto Calculus.

[1] L. Ambrosio, N. Gigli, and G. Savaré Gradient flows in metric spaces and in the space
of probability measures. Lectures in Mathematics ETH Zürich. Birkhäuser, Basel, 2005.
[2] D. Bakry, I. Gentil et M. Ledoux Analysis and geometry of Markov diffusion operators,
volume 348 of Grundlehren der Mathematischen Wissenschaften. Springer, Cham, 2014.
[3] C. Villani Topics in optimal transportation, Graduate Studies in Mathematics, vol. 58,
American Mathematical Society, Providence, RI, 2003.
[4] C. Villani Optimal transport, Grundlehren der Mathematischen Wissenschaften, vol.
338, Springer-Verlag, Berlin, 2009.

Numerical approximation methods for fluid mechanics (Khaled Saleh, 18h). A
first objective of this course is to present recent methods for the numerical approximation
of fluid mechanics models. The considered numerical schemes are used in industrial codes.
They are designed so as to mimic the main properties satisfied by the exact solutions:
positivity of the density, mass and momentum conservation, energy estimates, etc. A
second objective of the course is to establish the convergence of the numerical schemes
by following the lines of the theory of existence of weak solutions for the considered PDE
models. For this purpose, famous functional analysis results must be adapted to discrete
functional spaces. Contents of the course:

(1) PDE models in fluid mechanics: compressible Navier-Stokes and Euler systems.
Incompressible models.

(2) Study of the incompressible Stokes model. Well-posedness for weak solutions.
Analysis of a finite element numerical scheme: a priori estimates, compactness is
assumed at this level, convergence of the approximate solutions towards the exact
weak solution.

(3) Discrete functional analysis. We prove continuous/compact embedding results
for discrete functional spaces arising from the numerical discretization. These are
discrete counterparts to the famous Sobolev continuous embedding and Rellich’s
compact embedding theorems.
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(4) Numerical analysis of a finite volume - finite element numerical scheme for the
compressible Navier-Stokes equations: positivity and energy estimates, conver-
gence of the numerical method (compactness, passing to the limit in non-linear
terms with only weak convergence) for the stationary model.

(5) Non stationary models. Compactness in time: Aubin-Simon theorem and its
discrete counterpart. Study of a numerical scheme for the non stationary Stokes
model.

Kinetic theory (Laure Saint-Raymond, 18h). In this course, we will introduce
basic tools for the mathematical study of kinetic equations. We will then present two
important classes of kinetic equations (mean field equations and collisional equations)
and study their main features.

(1) Mathematical tools for the analysis of kinetic transport equations
1.1. A priori estimates in Lebesgue spaces
1.2. Averaging lemma
1.3. Dispersion and control of concentrations
1.4. Boundary conditions and trace estimates

(2) Mean field models
2.1. Some classical models
2.2. Weak solutions for the Vlasov-Poisson model
2.3. Propagation of moments and regularity
2.4. A uniqueness criterion
2.5. The mean field approximation: convergence of the empirical measure
2.6. The mean field approximation: propagation of chaos

(3) Collisional models
3.1. The Boltzmann equation and its BGK approximation
3.2. Weak solutions for the BGK equation
3.3. Propagation of moments and uniqueness
3.4. On the trend to global equilibrium
3.5. Renormalization techniques

4. Probability and statistics

This program is made of two closely intertwined lecture series in probability (P) and
statistics (S), that will provide a strong and interdisciplinary training in the modern
mathematics of random phenomena.

Via their choice of lectures (3 out of 4 in the first semester and 4 out of 6 in the second),
students may choose to give a stronger focus on the probabilistic or statistical aspects
of this program. It is also possible to follow lectures from other programs, especially in
PDEs. It is strongly advised to follow the corresponding refresher courses.

P1: Statistical physics (Christophe Garban, 24h). In statistical physics, one is
interested in physical models made of a large number of microscopic elements which
interact together in a simple fashion. The goal is then to understand how come such
simple microscopic mechanisms can generate interesting (and surprising!) macroscopic
phenomena such as phase transitions or symmetry breaking. This program has lead to
the development of an important branch of probability theory and the aim of this course
is to give a panorama of the field together with tools and techniques that are used in
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statistical mechanics. We shall focus on three fundamental models: percolation, Ising
model and O(n) spherical spin model. Program of the course:

(1) Percolation • Definition, phase transition • FKG inequality, pc = 1/2 • Exponen-
tial decay in the sub-critical regime • Russo-Seynour-Welsh theorem for critical
percolation

(2) Ising model • Definition, correlation inequalities • Infinite volume limit, Free
energy, phase transition • Low temperature and Peierls argument • Uniqueness
at high temperature

(3) Phase transition KT (Kosterlitz-Thouless) Nobel prize in phyics 2016 • Spin mod-
els with continuous symmetry (σx ∈ Sd, d ≥ 1) • No symmetry breaking in dimen-
sion 2 (Mermin-Wagner theorem) • Gaussian Free Field • Vortices and Coulomb
gas • A glimpse of Frölich-Spencer Theorem on the KT transition for the XY
model [σ = (σx)x∈Z2 ∈ (S1)Z2 ]

[1] W. Werner, Percolation et modèle d’Ising, Soc. Math. France, 2009.
[2] Y. Velenik, Introduction aux champs aléatoires markoviens et gibbsiens,
http://www.unige.ch/math/folks/velenik/Cours/2006-2007/Gibbs/gibbs.pdf.

P2: Stochastic calculus (Grégory Miermont, 24h). This lecture series will present
some of the most important tools allowing to build and study continuous-time stochastic
processes, the central example of which is of course Brownian motion. To this end, we will
have to introduce and study semimartingales, a rich class of processes for which one can
develop a differential and integral calculus, and set and solve certain type of stochastic
differential equations.

Just as for the familiar ordinary differential equations (or PDEs), the motivation to
study such stochastic differential equations comes from the goal of understanding the
global behavior of random processes by equations describing their infinitesimal behav-
ior. But since we are dealing with random processes, these equations contain a random
“noise”, which informally is an infinitesimal increment of Brownian motion. The main
problem of their study comes from the fact that Brownian motion (and therefore the other
processes of interest) have too rough trajectories (nowhere differentiable, for instance) for
the usual differential and integral calculus to make sense.

In front of this obstacle, we will develop a notion of stochastic integral, due to Itô. It
will give rise to a particular integral calculus, in which Itô’s formula acts as an integration
by parts (or a fundamental theorem of analysis) of a new kind. This integral calculus will
allow us to study the stochastic differential equations for continuous semimartingales,
and will shed a new light on these processes, for instance via Lévy’s characterization of
Browian motion, or the Dubins-Schwarz theorem according to which continuous martin-
gales are appropriate time-changes of Brownian motion. Contents:

(1) Generalities on continuous-time processes
(2) Continuous-time martingales, regularization. Local martingales, semimartingales.

Bracket of a continuous semimartingale.
(3) Stochastic integral with respect to a continuous semimartingale.
(4) Itô’s formula and applications. The theorems of Lévy, Dubins-Schwarz, Girsanov.

Burkholder-Davis-Gundy inequalities.
(5) Stochastic differential equations. The Lipschitz case.
(6) (Time allowing) Continuous-time Markov processes. Generators. Diffusions.
[1] Karatzas-Shreve: Brownian motion and stochastic calculus
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[2] Le Gall: Brownian motion and stochastic calculus
[3] Mörters-Peres: Brownian motion
[4] Revuz-Yor: Continuous martingales and Brownian motion
[5] Varadhan: Stochastic processes

S1: Concentration of measure in probability and high-dimensional statistical
learning (Guillaume Aubrun, Aurélien Garivier, Rémi Gribonval, 24h+8h).
This course will introduce the notion of concentration of measure and highlight its appli-
cations, notably in high dimensional data processing and machine learning. The course
will start from deviations inequalities for averages of independent variables, and illustrate
their interest for the analysis of random graphs and random projections for dimension re-
duction. It will then be shown how other high-dimensional random functions concentrate,
and what guarantees this concentration yields for randomized algorithms and machine
learning procedures to learn from large training collections. This course will be based on
a sample of the classical textbook “Concentration Inequalities” by Boucheron, Massart,
Lugosi, and on “High-Dimensional Probability” by Roman Vershynin. Applications to
machine learning will rely on “Understanding Machine Learning”, by Shalev-Schwartz
and Ben-David.

S2: Non-parametrics (Irène Ganaz, Clément Marteau, Franck Picard, 24h).
In this course we will focus on recent developments in non parametric statistics, with a
special focus on non-parametric model selection and high dimensional statistics. Vari-
able selection through the LASSO (Least Absolute Shrinkage and Selection Operator)
has revolutionized high dimensional statistics thanks to the use of a L1-constrained opti-
mization problem that ensures powerful statistical properties. These connections between
non-convex optimization and Statistics has been very fruitful from both the applied and
theoretical aspects of Machine Learning. A non-negligible part of this course will focus on
the theoretical properties (model selection, convergence ...) of penalized estimators, with
the use of oracle inequalities as a building block. These penalized methods will be put into
perspective with kernel-based estimation and regression, another popular non-parametric
strategy that requires fine theoretical and computational calibration (bandwith choice).
Some attention may also be payed to related topics such as wavelet transform, multiple
testing issues or signal processing on graphs.

P3 : Branching random walks (Xinxin Chen, 18h). Branching random walks
(BRWs) generalise both the concept of random walks and that of branching processes.
Branching Brownian motion (BBM) is a simple example of BRWs. The study of BBM
and BRW, not only has its own interests, but also leads to the understanding of other
models belonging in the BBM-universality class, such as the 2-dimensional Gaussian free
field, the 2-dimensional cover times, the characteristic polynomials of random unitary
matrices, etc.

We mainly give an elementary introduction to branching Brownian motion and branch-
ing random walk in the real line and describe the spinal decomposition which can be used
to obtain the convergence in law of the minimum.

Contents: • Branching Brownian motion and F-KPP equation • Branching random
walks and martingales • Spinal decomposition and change of measures • Applications
of spinal decomposition: Seneta-Heyde norming; weak convergence of minimum • Other
models in BBM-universality class
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[1] Bovier, A. Gaussian Processes on Trees: From spin glasses to branching Brownian
motion, Cambridge Univ. Press, 2016.

[2] Shi, Z. Branching Random Walks, Ecole d’Eté de Probas de Saint-Flour XLII-2012.

P4 : Random Graphs (Dieter Mitsche, 18h). In the last years, complex networks
have become central elements in many areas (telecommu- nication networks, internet,
neural networks, social networks, propagation of infectious diseases, propagation of ru-
mors, ....). It is a booming area, and it is crucial to develop mathematical models to
represent these networks.

A network is often modelled by a random graph, and this course proposes the study of
different random graph models, in particular the Erdös-Rényi random graph model, the
configuration model and random geometric graphs. A special focus of this course will be
given on the threshold of the giant component in different graph models. Contents:

(1) Erdös-Rényi model • Introduction, subgraph count • Local weak convergence •
Phase transition, appearance of a giant component • Hamiltonicity

(2) Configuration model • Differential equation method • Emergence of a giant com-
ponent 3. Random geometric graphs • Euclidean random geometric graphs -
emergence of the giant component • Introduction to random hyperbolic graphs

[1] N. Alon, J. Spencer, The probabilistic method, 3rd ed., John Wiley & Sons, 2008.
[2] C. Bordenave, Lecture notes on random graphs and combinatorial optimization,

https://www.math.univ-toulouse.fr/˜bordenave/coursRG.pdf
[3] A. Frieze, M. Karonski, Introduction to random graphs, CUP, 2015.
[4] M. Penrose, Random geometric graphs, Oxford Univ. Press, 2003.
[5] R. van der Hofstad, Random graphs and complex networks,
Vol. 1, Cambridge Series in Statistical and Probabilistic Mathematics, 2017.
Volume 2, https://www.win.tue.nl/˜rhofstad/ NotesRGCN.html
https://www.win.tue.nl/˜rhofstad/NotesRGCNII.pdf

P5 : Determinantal processes (Adrien Kassel, 18h). A determinantal process on
a nice topological measured space S is a random discrete collection of points such that
the correlation functions – loosely speaking, the density of probability of seeing a finite
subcollection of points at given locations – exist, and may be written in the form

ρm(x1, . . . , xm) = det[(K(xi, xj))1≤i,j≤m] ,

where K : S2 → C is a two-point function, also called a kernel.
There are many examples of stochastic models which give rise to interesting determi-

nantal processes, many of which find their origin in mathematical physics. The corre-
sponding kernel can sometimes be computed rather explicitly, which enables the study
of fine properties of the model. We may broadly distinguish two classes of processes
according to the topology of S: discrete ones (e.g. S = Zd) and continuous ones (e.g.
S = Rd). Examples of discrete processes include random spanning forests on finite and
infinite graphs; examples of continuous processes include eigenvalues of certain random
matrices of finite or infinite size.

The goal of this course will be to present a theory of determinantal processes, namely
to present what is common to these examples beyond their particularities. For that
matter, we will focus on the better understood case where K is self-dual, namely when
the symmetry K(x, y) = K(y, x) holds.
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We will start with the case where S is finite, for which a very complete understanding
is available. The kernel K is then a Hermitian matrix, and the process is completely
described in terms of linear algebra in CS, and its Euclidean geometry. This allows to
explain the link to theoretical physics in quite a transparent way. This part of the theory
may easily be extended to the case where S is countable, where now `2(S) is the relevant
geometry. To move on to the case of uncountable S requires extra caution, and the
dictionary between kernels and Euclidean geometry now needs to be enhanced to the
setup of bounded integral operators on the Hilbert space L2(S).

Examples we will present, at least superficially, include: uniform spanning forests of
infinite lattices; zeros of the Gaussian analytic function on the unit disc; eigenvalues of a
random Hermitian matrix distributed according to the Gaussian unitary ensemble.

[1] A. Borodin. Determinantal point processes. Oxford handbook of random matrix
theory, pp 231–249, Oxford Univ. Press, 2011.

[2] R. Lyons. Determinantal probability measures. Publ. Math. Inst. Hautes Études
Sci., (98):167–212, 2003.

[3] A. Soshnikov. Determinantal random point fields. Uspekhi Mat. Nauk, 55(5(335)):107–
160, 2000.

S3: Mathematical foundations of deep neural networks (Rémi Gribonval, Au-
rélien Garivier, 18h). This course will provide a detailed overview of the mathematical
foundations of modern learning techniques based on deep neural networks. Starting with
the universal approximation property of neural networks, the course will then show why
depth improves the capacity of networks to provide accurate function approximations for
a given computational budget. Tools to address the optimization problems appearing
when training networks on large collections will then be covered, and their convergence
properties will be reviewed. Finally, statistical results on the generalization guarantees
of deep neural networks will be described, both in the classical underfitting scenario and
in the overfitting scenario leading to the so-called “double descent” phenomenon.

S4: Inverse problems and high dimension (Yohann de Castro (course at Cen-
trale Lyon), complements by Rémi Gribonval, 18h). Sparsity and convexity are
ubiquitous notions in Machine Learning and Statistics. In this course, we study the
mathematical foundations of some powerful methods based on convex relaxation: L1-
regularisation techniques in Statistics and Signal Processing; Nuclear Norm minimiza-
tion in Matrix Completion; K-means and Graph Clustering. These approaches turned to
be Semi-Definite representable (SDP) and hence tractable in practice. The theoretical
part of the course will focus on the guarantees of these algorithms under the sparsity
assumption. The practical part of this cours will present the standard SDP solvers of
these learning problems.

Keywords: L1-regularisation; Matrix Completion; K-Means; Graph Clustering; Semi-
Definite Programming;

S5: Advanced machine learning theory (Laurent Jacob, Joseph Salmon, 18h).
Choosing an appropriate data representation is a key element in modern machine learn-
ing. While most existing learning algorithms manipulate vectors, important data types
including webpages, sequences or graphs do not admit a straightforward vectorial rep-
resentation. Other data types admit a natural vectorial encoding, but the resulting
representation is not necessarily appropriate for learning (this is the case for images).
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This course will introduce positive definite kernels, a powerful mathematical framework
to create, analyze and manipulate data representation. Kernels are functions measuring
the similarity between pairs of objects. We will show how they implicitly define a mapping
of the data to a Hilbert space, and how this fact can be used to manipulate large or even
infinite sets of descriptors. We will specifically discuss how these kernels can be used in
supervised and unsupervised learning algorithms, and provide examples of kernels defined
on sequences and graphs. Finally, we will consider how this framework can shed some
light on convolutional neural networks.

Keywords: positive definite kernel, RKHS, kernel methods, sequences, graphs, libsvm,
large scale learning, deep kernel machines.

5. Refresher Courses

Basic tools of functional analysis (Simon Masnou, 16h).
(1) Duality: Hahn-Banach theorem, weak and weak-* topologies, Lebesgue spaces;
(2) Distributions: weak derivatives, convolution, fundamental solutions of differential

operators;
(3) Fourier transform;
(4) Sobolev spaces: embeddings, extension and traces, compactness;
(5) Weak solutions of PDEs;
(6) Spectral analysis in Hilbert spaces.

Stochastic tools (Grégory Miermont, 10h).
(1) Discrete time martingales: stopping theorems and convergence. Extensions for

continuous time martingales.
(2) Construction of Brownian motion. Regularity of trajectories.
(3) Some properties of Brownian trajectories. Connection with the heat equation.

Starting with PDEs (Petru Mironescu, 16h).
(1) Geometric aspects of integration theory. Area, co-area, Jacobians.
(2) The Bochner integral.
(3) Comparison principles for first and second order partial differential equations. A

priori estimates.
(4) Perron’s method. A potential theoretic point of view of smoothness.
(5) The energy method. Uniqueness and domain of influence.
(6) Semi-group methods in the study of evolution equations. Existence, smoothness

and additional smoothness.


