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This program offers courses on both classical and modern topics around Kähler geometry,
complex algebraic geometry and symplectic topology. Refresher courses will ensure a common
knowledge for students with various mathematical backgrounds. The first semester consists of
four fundamental courses and the second semester consists of three advanced courses.
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0 Refresher courses

0.1 Several complex variables (10h)

Jean-Claude Sikorav

0.2 Complex algebraic geometry (10h)

Nicolas Ressayre

0.3 Differential topology (10h)

Klaus Niederkrüger

1 Basic courses : semester 1

1.1 Introduction to Kähler geometry (24h)

Jean-Claude Sikorav

The course will introduce some of the main ideas of Complex Geometry, which is the ge-
ometric version of Functions of Several Complex Variables, and more specifically of Kähler
geometry, which is an essential tool in many questions of Complex Algebraic Geometry.

We hope to cover the following topics:

• Differential calculus on complex manifolds, Dolbeault cohomology

• Analytic sets, application: Chow’s theorem

• Complex and holomorphic lines bundles, Chern class

• Connection on a line bundle, curvature, positivity

• Kähler metrics, Kähler identities

• Hodge theory and cohomology of compact Kähler manifolds

• Curvature tensor and Ricci form of a Kähler manifold



The main prerequisites are the basics of functions of several complex variables, for which a
refresher course will be offered.
References

[1 ] J.-P. Demailly, Complex Analytic and Differential Geometry, https:
www-fourier.ujf-grenoble.fr/ demailly/manuscripts/agbook.pdf.

[2 ] P. Griffiths and J. Harris, Principles of Algebraic Geometry, Wiley, 1978.

1.2 Introduction to Complex Algebraic Geometry (24h)

Antoine Etesse

The goal of this course is to introduce several important notions in (complex) algebraic
geometry.

The first important invariants1 that one associates to an algebraic variety is the cohomology
groups of its structural sheaf. We will therefore start off with the general notions of sheaves
and cohomology of sheaves.

Beside the structural sheaf on an algebraic variety X (which should be thought of as the
trivial line bundle on X), one is interested in the set of (isomorphism classes of) line bundles on
X, called the Picard group. We will therefore introduce this set, and see how this is connected
to codimension 1 subvarieties of X, leading to the notions of Weil divisors and Cartier divisors.

Almost by definition, an algebraic variety X admits a line bundle L → X that is called
ample. We will discuss this important notion, and its interpretations. In particular, we will see
its analytic interpretation, culminating to the famous Kodäıra embedding theorem.
References

[1 ] R. Lazarseld, Positivity in Algebraic Geometry I, Springer, 2004.

[2 ] C. Voisin, Hodge Theory and Complex Algebraic Geometry, Cambridge University Press,
2002.

1.3 Convexity in symplectic geometry (12h)

Klaus Niederkrüger

The aim of this course is to give an introduction to Lie group actions on symplectic mani-
folds. We’ll briefly cover the formalism of Hamiltonian functions and moment maps. Concen-
trating on compact Lie groups, we prove the symplectic slice theorem which provides the local

1In a vague sense!



model for orbits. We will show that the Hamiltonian function of a circle action is of Morse-Bott
type, and that all fixed point components are symplectic manifolds. The ultimate goal is to
combine this information to prove the Atiyah-Guillemin-Sternberg theorem that states that the
image of the moment map of a Hamiltonian torus action is a convex polytope.
References

[1 ] M. Atiyah, Convexity and commuting Hamiltonians, Bull. London Math. Soc. 14
(1982), 1-15, Springer, 2004.

[2 ] V. Guillemin, S. Sternberg, Convexity properties of the moment mapping, Invent Math
67, 491–513 (1982)

[3 ] D. McDuff, D. Salamon, Introduction to symplectic topology, Oxford Mathematical
Monographs.

1.4 Reductive algebraic group over C (12h)

Jérôme Germoni
In this mini-course, we study the complex reductive groups, their structure and their represen-
tation theory. A complex reductive group is defined to be the complexified of a real compact
Lie reductive. We will show that their structure is very rigid and his governed by a combina-
torial data called root systems. Their representations are semi-simple and the irreducible ones
are bijectively parametrized integer points in a convex cone. By lack of time, some proofs will
made only for the linear group GLn(C).

[1 ] J. Humphreys, Linear algebraic Groups, Graduate text in Mathematics, Springer 1975.

[2 ] Fulton-Harris, Representation Theory. A first Course, Graduate text in Mathematics,
Springer 2004.

2 Advanced courses : semester 2

2.1 GIT and Kempf-Ness theorem (24h)

Nicolas Ressayre

In this course, we study the basic Geometric Invariant Theory (GIT). We work in a context
of complex algebraic geometry: a complex reductive group (such as GLn(C)) acts on a projective
variety (such as the projective space PN). Then we aim to construct a space of orbits. Two
phenomenum occur: one need to exclude some orbits (called unstable) and to identify other
ones.



We will mainly study two results: The first, the Hilbert-Mumford theorem is the main tool
to understand unstability. The second, Kempt-Ness theorem is a bridge between GIT and
Hamiltonian actions of compact Lie groups (via moment map).

We plan to present examples from several contexts: Linear Algebra (Horn’s problem), Rep-
resentation Theory, Representation of quivers, Algebraic Geometry. . .

[1 ] Igor Dolgachev, Lectures on Invariant Theory, LNS 296, London Math Society, Cam-
bridge University Press.

[2 ] Ramo Álejandro Urquijo Novella, GIT quotients and symplectic reduction: the Kempf–
Ness theorem, https://math.uniandes.edu.co/∼florent/resources/teaching/students
/Ramon-Urquijo—Kempf-Ness.pdf

[3 ] Mumford-Fogarty-Kirwan, Geometric Invariant Theory, Springer Verlag.

2.2 Symplectic capacities (24h)

Marco Mazzucchelli

One of the earliest results of symplectic topology is the celebrated non-squeezing theorem of
Gromov from 1985: the ball B2n(r) admits a symplectic embedding into the cylinder Z2n(R) =
B2(R)×R2n−2 if and only if the radii satisfy r < R. These radii have the following dynamical
interpretation. For any Hamiltonian H : R2n → R with regular level set H−1(0) = ∂B2n(r),
the minimal action of the periodic orbits of the Hamiltonian flow ϕt

H |∂B2n(r) is precisely πr2;
analogously, if H−1(0) = ∂Z2n(R), the minimal action is πR2. This suggests that the rigidity
asserted by Gromov’s theorem is related to the periodic orbits on the boundary of the considered
domains.

Inspired by Gromov’s theorem and by its interplay with Hamiltonian dynamics, Ekeland
and Hofer introduced the notion of symplectic capacity, and constructed the first examples of
them. A capacity c is a symplectic invariant that measures the “size”, in a suitable sense, of
domains contained in symplectic manifolds. Gromov’s theorem is a direct consequence of the
fact that c(B2n(r)) = c(Z2n(R)) for any such capacity c.

In this course, after introducing the needed background, we explore several constructions of
symplectic capacities, their applications, and some open questions, including:

• Rigidity phenomena: Gromov non-squeezing, the symplectic camel theorem, and
Eliashberg-Kim-Polterovich contact non-squeezing.

• Dynamical applications, and in particular the proof of the Weinstein conjecture for
contact-type hypersurfaces of R2n: any such hypersurface admits a closed orbit for its
Reeb flow.



• The Viterbo conjecture, asserting that the centrally symmetric convex domains of volume
one with the largest symplectic capacities are symplectomorphic to round balls, and its
relation with the Mahler conjecture from convex geometry.

References

[1 ] A. Abbondandolo, B. Bramham, U. Hryniewicz, P. Salomão. Sharp systolic inequalities
for Reeb flows on the three-sphere. Invent. Math. 211 (2018), no. 2, 687–778.

[2 ] S. Artstein-Avidan, R. Karasev, Y. Ostrover. From symplectic measurements to the
Mahler conjecture. Duke Math. J. 163 (2014), no. 11, 2003–2022.

[3 ] H. Hofer, E. Zehnder. Symplectic invariants and Hamiltonian dynamics. Birkhäuser
Advanced Texts, 1994. xiv+341 pp.

2.3 Hermite–Einstein metrics and slope stability (24h)

Eveline Legendre

The Kobayashi-Hitchin (KH) correspondence between slope-stable bundles and Hermite-
Einstein connections has had an enormous influence on contemporary differential and algebraic
geometry. Established on Riemann surfaces in the 1960’s by Narasimhan and Seshadri and
then in various degrees of generality in the 1980’s by leaders like Donaldson, Uhlenbeck and
Yau. This result provides a necessary and sufficient algebraic condition (slope-stability) for the
existence of a solution (Hermitian Yang–Mills connection/Hermite–Einstein metric) of certain
non-linear partial differential equations. More precisely, given a holomorphic bundle E over a
Kähler manifold (X,ω) and denoting the Kähler class [ω] ∈ H1,1

Dolb(X), the KH correspondence
says that

E is slope stable w.r.t [ω] ⇔ ∃! Hermite–Einstein metric h on E

where slope stability is a numerical condition on the slope of all coherent subsheaves of the
sheaf of sections of E and, denoting Fh the curvature of the Chern connection of the Hermitian
metric h, the Hermite–Einstein condition is the PDE trωFh = λEIdE, where λE is a topological
constant.

The KH correspondence provides a Riemannian structure on the moduli space of slope-stable
bundles whose geometry is a topological/algebraic invariant of the underlying variety. A partic-
ularly striking application of this, is the use of Donaldson Theory to give non-diffeomorphism
results for algebraic surfaces by comparing moduli spaces of holomorphic vector bundles and
instanton moduli spaces.

Generalisations of the KH correspondence, analogous theories and conjectures have emerged
in recent decades, giving many different notions of stability depending on the algebraic struc-
ture involved (Chow stability, Bridgeland stability, K-stability, weighted K-stability, valuative



stability...) and a candidate for a corresponding solution of a geometric PDE (Kähler-Einstein
(KE), constant scalar curvature, extremal or weighted extremal metrics, deformed Hermitian
Yang–Mills connections, special Lagrangian...). Most of these conjectural pictures are still to
be confirmed.

The goal of this course is to introduce the students to the KH correspondence. This neces-
sites to cover the following topics :

• Hermitian connections on holomorphic vector bundles (of any finite rank), Chern-Weyl
Theory.

• Bochner-Kodaira-Nakano identity and annulation’s theorem.

• Hermite-Einstein metrics and the gauge group action on hermitian connections.

• Slope-stability of sheaves.

References

[1 ] Hirzebruch, Topological Methods in Algebraic Geometry Springer-Verlag 1966.

[2 ] S.Kobayashi, Differential geometry of complex vector bundles, Princeton University
Press, 1987.


