
Master 2 “Mathématiques Avancées” 2024-2025

Partial Differential Equations
and Applications

This program aims to prepare students for research in the field of theoretical and numerical
analysis of problems involving partial differential equations (PDEs). It has three components:

1. Refresher Courses in the first 2 weeks aimed at ensuring a common knowledge base for
students from various mathematical backgrounds.
These courses are optional but very strongly advised.

2. Three Basic Courses which offer a broad introduction to the analysis techniques of a
large class of partial differential equations.

3. Four Advanced Courses on subjects closely related to current research: optimal trans-
port, the non-linear Schrödinger equation, kinetic theory, stochastic reaction-diffusion
equations.

The advanced courses will particularly welcome the participation of PhD students and col-
leagues.
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1 Refresher Courses

Basic tools of functional analysis, Pierre-Damien Thizy (16h)
1. Duality: Hahn-Banach theorem, weak and weak-* topologies, Lebesgue spaces;
2. Distributions: weak derivatives, convolution, fundamental solutions of differential op-

erators;
3. Fourier transform;
4. Sobolev spaces: embeddings, extension and traces, compactness;
5. Weak solutions of PDEs;
6. Spectral analysis in Hilbert spaces.

Starting with PDEs, Alexandre Lanar (16h)
1. Introduction: classifications of PDEs, symbols, notions of solutions.
2. The Laplace equation and second order elliptic operators.
3. The heat equation and second order parabolic operators.
4. Hyperbolic operators.
5. Semigroup theory and applications.

Stochastic tools, Thomas Budzinski (15h)
1. Discrete time martingales: stopping theorems and convergence. Extensions for contin-

uous time martingales.
2. Construction of Brownian motion. Regularity of trajectories.
3. Some properties of Brownian trajectories. Connection with the heat equation.
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2 Basic Courses

Quelques modèles et méthodes en sciences du vivant, Thomas Lepoutre
(24h)

La modélisation en sciences du vivant est très vaste et nous nous intéresserons ici à des
modèles de dynamique de population sous formes d’EDP linéaires ou nonlinéaires permettant
d’illustrer certains comportements importants. Le cours abordera des équations (ou des sys-
tèmes) paraboliques nonlinéaires (qui permettront de s’intéresser à des outils pour l’existence
ou l’étude du comportement en temps long). Des modèles de type intégrodifférentiels seront
également abordés dans le cadre des populations structurées (cadre où la population est décrite
comme une densité d’individus distingués par une caractéristique comme l’âge, la taille ou un
trait phénotypique). Dans ce cadre, nous nous étudierons en particulier le comportement des
problèmes linéaires.

Nous chercherons dans ce cours à illustrer les différents régimes possibles (dépendant po-
tentiellement d’un paramètre) pour un même modèle (explosion en temps fini, convergence
vers un équilibre ou alignement vers un profil) et les outils pour les étudier.
English version: A few models and methods for life sciences

Modeling in the life sciences is a broad topic, and we focus on population dynamics in the
form of linear or nonlinear PDEs in order to illustrate certain important behaviors. Nonlinear
parabolic equations (or systems) will be covered (providing tools for the existence or study
of long-time behavior). We will study integrodifferential models in the context of structured
populations (where the population is described as a density of individuals distinguished by a
characteristic such as age, size or phenotypic trait). In this context, we will study in particular
the behavior of linear problems.

In this course, we will illustrate the different possible regimes (potentially depending on a
parameter) for the same model (finite-time explosion, convergence towards an equilibrium or
alignment towards a profile) and the tools for studying them.

Evolutionary PDEs, Dragos Iftimie (24h)

1. Some properties and reminders of distributions.
2. The Cauchy problem for linear PDEs.

(a) Variable coefficients. Cauchy-Kovalevskaya theorem, characteristic hypersurfaces
and Holmgren’s uniqueness theorem. Well-posed problems.

(b) Constant coefficients.
• Existence of an elementary solution, the Malgrange-Ehrenpreis theorem. Ex-

amples. Necessary and sufficient conditions for hypoellipticity.
• Local resolubility of the Cauchy problem. Hyperbolicity. Gårding’s theorem.

Necessary and sufficient conditions for hyperbolicity.
3. Dispersive PDEs.

(a) A few linear dispersive PDEs and their explicit solutions.
(b) Non linear Schrödinger equation. Strichartz estimates and some well-posedness

results for the Cauchy problem.
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4. Symmetric hyperbolic quasilinear systems. Incompressible Euler equations. H3 solu-
tions and the Beale-Kato-Majda blow-up criterion.

5. Incompressible Navier-Stokes equations. Leray solutions. Uniqueness for small data in
dimension 3.

Calculus of variations and elliptic equations,
Filippo Santambrogio (24h)
The course will be mainly devoted to the study of the minimizers of integral functionals, their
existence, their regularity, and their characterization in terms of solutions of some partial dif-
ferential equations, but regularity results for the equations themselves will also be presented
for their own interest.
The course will be roughly structured into 10 classes as follows:

1. Introduction and 1D examples of 1D variational problems (geodesics, brachistochrone,
economical growth models) and their applications, tools for existence, Euler-Lagrange
equation.

2. Higher-dimensional calculus of variations and the example of harmonic functions and
distributions Euler-Lagrange in higher dimension, main properties of the solutions of
Δu = 0 in connection with the minimization of the Dirichlet energy

3. Convexity and semicontinuity conditions to ensure the semicontinuity for theweak Sobolev
convergence of integral functionals and applications to existence results. Notions of con-
vex analysis (Fenchel-Legendre transforms, subdifferentials. . . ).

4. Convex duality duality for some “simple” convex variational problems.
5. Regularity via duality application of convex duality to someH1 regularity results.
6. Lp estimates for the Poisson equation. Proof by interpolation of the result Δu = f ,
f ∈ Lp ⇒ u ∈ W 2,p.

7. Hölder regularity with smooth coefficients. Morrey-Campanato spaces and applications
to the result ∇ ⋅ (a(x)∇u) = ∇ ⋅ F , a, F ∈ Ck,� ⇒ u ∈ Ck+1,� .

8. Hölder regularity with bounded coefficients. Proof byMoser’s iterations of the DeGiorgi
regularity result ∇ ⋅ (a(x)∇u) = 0, a bounded and uniformly elliptic but not smooth
⇒ u ∈ C0,� and applications to the solution of the 19th Hilbert problem.

9. Γ−convergence and examples. The general theory of the Γ−convergence for the lim-
its of variational problems and some example, in particular the optimal quantization of
measures (aka optimal location problem).

10. BV functions, perimeters, and the Modica-Mortola functional. Few words about the
space BV and its role in defining sets of finite perimeter. Proof of the Γ−convergence of
the functionals ∫ "|∇u|2 + "−1W (u) towards the perimeter functional.

The knowledge of some functional analysis (in particular, compactness for weak-* convergence
and Sobolev spaces) and some measure theory is the main prerequisite for the course.
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3 Advanced Courses

Optimal transport: introduction and overview, Cédric Villani (18h)
Born in the late eighteenth century, the field of optimal transport has been revolutionized in
the first two decades of the 21th century. At the crossroad of analysis, optimization, partial
differential equations and statistics, it has become a classical tool in many fields, from fluid
mechanics to non-Euclidean geometry to artificial intelligence. The lines of the course will be:

1. Basic theory, Monge-Kantorovich duality
2. Optimal transport and geometry and curvature
3. A selection of applications and current issues
References :
• C. VILLANI, Optimal transport, old and new, Grundlehren der mathematischen Wis-

senschaften, Vol. 108, Springer, 2008.
• C. VILLANI, Topics in Optimal Transportation, Graduate studies in mathematics, Vol.

58, American Mathematical Society, 2003
• F. SANTAMBROGIO , Optimal transport for applied mathematicians, Progress in Nonlin-

ear Differential Equations and Their Applications, Vol. 87, Birkhäuser, 2016
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Systems of Reaction-diffusion equations: global existence and stochastic
modelling , Julien Vovelle (18h)

• Tools for the study of mean-field limits of stochastic systems (Markov processes, Mar-
tingales, Propagation of chaos)

• Quadratic systems of reaction-diffusion equations with tamed non-linearity.
• Quadratic systems of reaction-diffusion equations: global existence of smooth solutions.
• Mean-field limits of the stochastic description of bimolecular chemical reactions.
References
• Limites de champ moyen, cours de dea 2001-2002, Cédric Villani.
• Quantitative propagation of chaos in the bimolecular reaction-diffusion model, Lim-Lu-

Nolen, 2020
• Global classical solutions to quadratic systems with mass control in arbitrary dimen-

sions, Fellner-Morgan-Tang, 2020

On the non linear Schrödinger equation, Nikolay Tzvetkov (18h)
We will consider the defocusing non linear Schrödinger equation. We will first show that

in dimensions≤ 3 this equations are globally well-posed in various geometric settings. As a by
product , we will obtain that the H1 norm of the solutions are bounded in time. We will then
consider the question of the behaviour of theHs, s > 1 norms of the solutions. This question
is closely related to the possible migration of the Fourier modes of the solutions from low to
high frequencies. We will show that when the problem is posed on the euclidean spaceℝ3 then
the Hs, s > 1 norms remain bounded in time which prevents the possible migration to high
frequencies of the Fourier modes of the solutions. In sharp contrast, we will show that when
the problem is posed on the product space T 2 × ℝ then the Hs, s > 1 norms of the solutions
may be unbounded when the time evolves and thus the migration to higher modes may indeed
occur. This phenomenon is some times referenced as a weak wave turbulence.

Plan of the course :
1. Dispersive estimates for the linear equation.
2. Global well-posedness in the energy space.
3. Large data scattering for NLS on ℝ3.
4. The modified scattering.
5. The resonant system in the periodic setting and its large time analysis.
6. Solutions with unbounded Sobolev orbits for NLS on T 2 ×ℝ.

Semiclassical dynamics, Laurent Laflèche (18h)
This course will present mathematical tools to describe the links between quantum and

classical theories. Classical dynamics of particles are indeed given by Newton laws, and when
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the number of particles is large, by partial differential equations for continuous distributions,
such as kinetic and fluid equations. On the other hand, quantum mechanics is expressed in
terms of complex valued wave functions which verify Schrödinger equations.

More generally, semiclassical analysis aims to understand asymptotic expansions in terms
of a small parameter often corresponding to the Planck constant. Such expansions usually first
require some regularity independent of the small parameter.

The main topics of the lectures will be
• the basis of the underlying physical theories
• the Wigner and Husimi transforms, the Weyl and Wick quantizations
• operator theory, Schatten spaces, trace and semiclassical inequalities
• Quantum optimal transport and Sobolev spaces
• the large particle number approximation and the limit from the Hartree to the Vlasov

equation
Some references:
• F. Golse. Mean Field Kinetic Equations - M2 Course Notes. Ecole Polytechnique, 2013.

http://www.cmls.polytechnique.fr/perso/golse/M2/PolyKinetic.pdf
• B. Simon. Trace Ideals and Their Applications: Second Edition, volume 120 of Math-

ematical Surveys and Monographs. American Mathematical Society, 2 edition edition,
2005.

• R. L. Frank, The Lieb-Thirring Inequalities: Recent Results andOpen Problems. arXiv:2007.09326,
18 juillet 2020. http://arxiv.org/abs/2007.09326.
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