
Probability

This Master 2 program includes:

• a Refresher Course (optional but strongly suggested) of 10 hours by Charles-Edouard Bréhier,
that will revise some basic Stochastic Tools;

3 Basic Courses (20 hours+6 hours of tutorials)

• Stochastic Calculus, by Grégory Miermont,

• Statistical Physics, by Christophe Garban,

• Random Walks on graphs, by Fabio Toninelli;

and 3 Advanced courses (24 hours)

• High-dimensional phenomena, by Guillaume Aubrun,

• Random graphs, by Dieter Mitsche

• Integrable probability, by Jérémie Bouttier.

This Master program proposes three rather complementary directions.

The courses on “Stochastic Calculus” and “High-dimensional phenomena” give a glimpse of the
links between probability and analysis, in particular the concentration of measure phenomenon.
They may interest also students attending the PDE Master program.

The course on “Statistical Physics”, the one on “Random walks on graphs” and the one on
“Random graphs” give an introduction to discrete probability and bring up a variety of research
themes such as random geometry, out-of-equilibrium statistical physics and random walks.

Finally, the advanced course on “Integrable probability” has a strong connection both with sta-
tistical physics and with combinatorics; it allows to get in touch with extremely active research
topics, such as growth models in the KPZ universality class, determinantal processes and the con-
nection between random tilings and the Gaussian Free Field. The courses on “High dimensional
phenomena” and “Random graphs” are also aimed at students who plan to pursue a PhD thesis in
mathematical statistics.
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Stochastic tools
Refresher course, Charles-Edouard Bréhier

This course, that will revise some bases the theory of stochastic processes, will serve as a prepa-
ration for the courses on “Stochastic Calculus” and “Random walks on graphs”.

Contents :

1. Discrete time martingales; stopping theorems and convergence. Extensions for continuous
time martingales.

2. Construction of Brownian Motion. Regularity of trajectories.

3. Some properties of the Brownian trajectories. Connection with the heat equation.
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Stochastic Calculus
Basic Course, Grégory Miermontv

This lecture series will present some of the most important tools allowing to build and study
continuous-time stochastic processes, the central example of which is of course Brownian motion.
To this end, we will have to introduce and study semimartingales, a rich class of processes for which
one can develop a differential and integral calculus, and set and solve certain type of stochastic
differential equations.

Just as for the familiar ordinary differential equations (or PDEs), the motivation to study such
stochastic differential equations comes from the goal of understanding the global behavior of random
processes by equations describing their infinitesimal behavior. But since we are dealing with random
processes, these equations contain a random "noise", which informally is an infinitesimal increment
of Brownian motion. The main problem of their study comes from the fact that Brownian motion
(and therefore the other processes of interest) have too rough trajectories (nowhere differentiable,
for instance) for the usual differential and integral calculus to make sense.

In front of this obstacle, we will develop a notion of stochastic integral, due to Itô. It will give
rise to a particular integral calculus, in which Itô’s formula acts as an integration by parts (or a
fundamental theorem of analysis) of a new kind. This integral calculus will allow us to study the
stochastic differential equations for continuous semimartingales, et will shed a new light on these
processes, for instance via Lévy’s characterization of Browian motion, or the Dubins-Schwarz theo-
rem according to which continuous martingales are appropriate time-changes of Brownian motion.

Contents :

• Generalities on continuous-time processes

• Continuous-time martingales, regularization. Local martingales, semimartingales. Bracket of
a continuous semimartingale.

• Stochastic integration with respect to a continuous semimartingale.

• Itô’s formula and applications. The Theorems of Lévy, Dubins-Schwarz, Girsanov.

• Stochastic differential equations.

• Continuous-time Markov processes. Generators. Diffusions.

References :

• Karatzas-Shreve: Brownian motion and stochastic calculus

• Le Gall: Brownian motion and stochastic calculus

• Mörters-Peres: Brownian motion

• Revuz-Yor: Continuous martingales and Brownian motion

• Varadhan: Stochastic processes
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Statistical mechanics
Basic Course, Christophe Garban

In statistical physics, one is interested in physical models made of a large number of microscopic
elements which interact together in a simple fashion. The goal is then to understand how come such
simple microscopic mechanisms can generate interesting (and surprising!) macroscopic phenomena
such as phase transitions or symmetry breaking. This program has lead to the development of an
important branch of probability theory and the aim of this course is to give a panorama of the field
together with tools and techniques that are used in statistical mechanics. We shall focus on three
fundamental models: percolation, Ising model and O(n) spherical spin model.

Program of the course

1. Percolation

• Definition, phase transition

• FKG inequality, pc = 1/2

• Exponential decay in the sub-critical regime

• Russo-Seynour-Welsh theorem for critical percolation

2. Ising model

• Definition, correlation inequalities

• Infinite volume limit, Free energy, phase transition

• Low temperature and Peierls argument

• Uniqueness at high temperature

3. Phase transition KT (Kosterlitz-Thouless) Nobel price in phyics 2016

• Spin models with continuous symmetry (σx ∈ Sd, d ≥ 1)

• No symmetry breaking in dimension 2 (Mermin-Wagner theorem)

• Gaussian Free Field

• Vortices and Coulomb gas

• A glimpse of Frölich-Spencer Theorem on the KT transition for the XY model [σ =
(σx)x∈Z2 ∈ (S1)Z2 ]

References

• W. Werner, Percolation et modèle d’Ising, Soc. Math. France, 2009.

• Y. Velenik, Introduction aux champs aléatoires markoviens et gibbsiens, http://www.unige.
ch/math/folks/velenik/Cours/2006-2007/Gibbs/gibbs.pdf.
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Random walks on graphs
Basic Course, Fabio Toninelli

A reversible Markov chain can be seen as a random walk on a weighted graph, whose geometry
may allow to precisely describe the behavior of the walk, and vice-versa. This course will deal
with the study of such walks, and notably the characterization of recurrence and transience, via the
electric network properties of the graph. We will explain also the link between these properties and
some natural random objects defined on the graph, such as the loop-erased random walk, uniform
random spanning trees, the Gaussian Free Field, etc. In the second half of the course, we will discuss
the question of the speed of convergence towards the stationary measure for random walks on finite
graphs, in terms of mixing time (total-variation convergence) and of spectral gap (L2 convergence).

Contents:

1. Random walks and electric networks

• Discrete Dirichlet form, energy

• Characterization of the asymptotic behavior via the network resistance

• The case of random walks on trees; examples.

• Uniform random spanning tree of a graph, matrix-tree theorem, loop-erased random walk

• Gaussian Free Field on a graph

2. Random walks on finite graphs: speed of convergence

• Mixing time Tmix (reversible and non-reversible random walks)

• Tmix upper bounds: path coupling and weighted distances

• Spectral gap, variational principle and time correlations

• Bounding the spectral gap: geometric comparison methods

• The cutoff phenomenon

References

• R. Lyons and Y. Peres, Probability on trees and networks, Cambridge University Press, 2017.

• Y. Le Jan,Markov paths, loops and fields, École D’Été de Probabilités de Saint-Flour XXXVIII–2008,
Springer Lect. Notes in Math. 2026, 2011.

• D. Levin, Y. Peres, E. Wilmer, Markov Chains and mixing Times, Amer. Math. Soc., 2009.
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High-dimensional phenomena
Advanced Course, Guillaume Aubrun

This course studies phenomena of high dimension in analysis and probability. We will focus on
several aspects of the concentration of measure phenomenon: when studying problems involving a
large number of variables, it is common that the quantities of interest “concentrate” around a typical
value.

This principle is fundamental for the study of asymptotic phenomena (i.e. when dimension goes
to infinity) in geometry of finite-dimensional normed spaces. We will discuss in particular the
geometry of the Banach–Mazur compactum (the space of normed spaces of fixed dimension), where
the probabilistic method plays a fundamental role.

Contents:

• Volume of convex bodies: Brunn–Minkowski inequality and consequences.

• Concentration of measure. Concentration for sums of i.i.d. random variables, concentration
on the sphere, on Gaussian space. Connections with isoperimetry. Johnson–Lindenstrauss
lemma.

• Covering numbers, connections with error-correcting codes.

• Gaussian processes: Dudley inequality, Sudakov inequality, chaining.

• Geometry of high-dimensional convex bodies: John’s theorem, Gluskin’s theorem (diameter
of the Banach–Mazur compactum).

• Dvoretzky’s theorem (almost Euclidean sections of convex bodies) and consequences.

• Grothendieck’s inequality ; link with semi-definite programming.

References:

• Roman Vershynin, High-dimensional Probability, Cambridge Univ. Press, 2018. Also https:
//www.math.uci.edu/~rvershyn/papers/HDP-book/HDP-book.pdf

• Guillaume Aubrun et Stanisław Szarek, Alice and Bob meet Banach: The Interface of Asymp-
totic Geometric Analysis and Quantum Information Theory, Mathematical Surveys and Mono-
graphs Volume 223 (2017).

• Shiri Artstein–Avidan, Apostolos Giannopoulos et Vitali Milman, Asymptotic Geometric Anal-
ysis, Part I, Math. Surveys Monogr. 202, Amer. Math. Soc. 2015.

• D. Li et H. Queffélec, Introduction à l’étude des espaces de Banach, Soc. Math. France, 2004.
English translation, Cambridge Univ. Press, 2018.
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Random graphs
Advanced Course, Dieter Mitsche

In the last years, complex networks have become central elements in many areas (telecommu-
nication networks, internet, neural networks, social networks, propagation of infectious diseases,
propagation of rumors, ....). It is a booming area, and it is crucial to develop mathematical models
to represent these networks.

A network is often modelled by a random graph, and this course proposes the study of different
random graph models, in particular the Erdős-Rényi random graph model, the configuration model
and random geometric graphs. A special focus of this course will be given on the threshold of the
giant component in different graph models.

Contents:

1. Erdős-Rényi model

• Introduction, subgraph count

• Local weak convergence

• Phase transition, appearance of a giant component

• Hamiltonicity

2. Configuration model

• Differential equation method

• Emergence of a giant component

3. Random geometric graphs

• Euclidean random geometric graphs - emergence of the giant component

• Introduction to random hyperbolic graphs

References:

• N. Alon, J. Spencer, The probabilistic method, 3rd ed., John Wiley & Sons, 2008.

• C. Bordenave, Lecture notes on random graphs and combinatorial optimization, https://
www.math.univ-toulouse.fr/~bordenave/coursRG.pdf [soon to change to Marseille]

• A. Frieze, M. Karonski, Introduction to random graphs, Cambridge University Press, 2015.

• M. Penrose, Random geometric graphs, Oxford Univ. Press, 2003.

• R. van der Hofstad, Random graphs and complex networks, Vol. 1, Cambridge Series in Statis-
tical and Probabilistic Mathematics, 2017. Volume 2, https://www.win.tue.nl/~rhofstad/
NotesRGCN.htmlhttps://www.win.tue.nl/~rhofstad/NotesRGCNII.pdf
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Integrable probability
Advanced Course, Jérémie Bouttier

In 1961, Stanisław Ulam (who is better known for his participation to the Manhattan Project)
raised the question of the longest increasing subsequence, which can be formulated as follows. For σ
a permutation of {1, . . . , n}, we denote by `n(σ) the maximal length of an increasing subsequence
of σ. For instance, for σ = (4, 3, 7, 5, 2, 6, 1) we have `n(σ) = 3, as realized for instance by the
subsequence (4, 5, 6). What can be said about `n(σ) when σ is drawn uniformly at random in the
symmetric group of order n, and we let n tend to infinity?

This problem, popularized by Hammersley, led to many works. It is relatively elementary to
see that the order of magnitude of `n(σ) is

√
n. In 1977, Vershik-Kerov and Logan-Shepp showed

that, in fact, `n(σ)/
√
n→ 2 in probability. Finally, in 1998, Baik, Deift and Johansson studied the

fluctuations of `n(σ) around 2
√
n and showed the following remarkably precise result:

P
(
`n(σ)− 2

√
n

n1/6
≤ s

)
−−−→
n→∞

F2(s)

where F2 is the so-called Tracy-Widom distribution, also describing the fluctuations of the largest
eigenvalue of a random hermitian matrix.

This unexpected link between a combinatorial problem and random matrix theory is illustrative
of the richness of integrable probability, a booming subject which also uses methods from mathemat-
ical physics, representation theory, functional analysis, etc. The purpose of this course is to give a
glimpse of this subject.

Contents

• Combinatorial tools: random partitions and permutations, symmetric functions, Young dia-
grams and Young tableaux, Robinson-Schensted-Knuth algorithm.

• Analytic tools: determinantal processes, Fredholm determinants, orthogonal polynomials,
variational methods, fermionic methods.

• Applications: random tilings, last-passage percolation, growth models, limit shapes, KPZ
universality class.

References

1. Dan Romik, The surprising mathematics of longest increasing subsequences, Cambridge Uni-
versity Press, 2015. https://www.math.ucdavis.edu/~romik/book/

2. Alexei Borodin et Vadim Gorin, Lectures on integrable probability, Probability and statistical
physics in St. Petersburg. https://arxiv.org/abs/1212.3351
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